\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\underset {#3}{\underline {#1}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\overset {#3}{\overline {#1}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LATEXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LATEXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\mathop \ordinarycolon }}\)
\(\newcommand \dblcolon {\vcentcolon \vcentcolon }\)
\(\newcommand \coloneqq {\vcentcolon =}\)
\(\newcommand \Coloneqq {\dblcolon =}\)
\(\newcommand \coloneq {\vcentcolon {-}}\)
\(\newcommand \Coloneq {\dblcolon {-}}\)
\(\newcommand \eqqcolon {=\vcentcolon }\)
\(\newcommand \Eqqcolon {=\dblcolon }\)
\(\newcommand \eqcolon {\mathrel {-}\vcentcolon }\)
\(\newcommand \Eqcolon {\mathrel {-}\dblcolon }\)
\(\newcommand \colonapprox {\vcentcolon \approx }\)
\(\newcommand \Colonapprox {\dblcolon \approx }\)
\(\newcommand \colonsim {\vcentcolon \sim }\)
\(\newcommand \Colonsim {\dblcolon \sim }\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\)
\(\newcommand{\alphaup}{\unicode{x03B1}}\)
\(\newcommand{\betaup}{\unicode{x03B2}}\)
\(\newcommand{\gammaup}{\unicode{x03B3}}\)
\(\newcommand{\digammaup}{\unicode{x03DD}}\)
\(\newcommand{\deltaup}{\unicode{x03B4}}\)
\(\newcommand{\epsilonup}{\unicode{x03F5}}\)
\(\newcommand{\varepsilonup}{\unicode{x03B5}}\)
\(\newcommand{\zetaup}{\unicode{x03B6}}\)
\(\newcommand{\etaup}{\unicode{x03B7}}\)
\(\newcommand{\thetaup}{\unicode{x03B8}}\)
\(\newcommand{\varthetaup}{\unicode{x03D1}}\)
\(\newcommand{\iotaup}{\unicode{x03B9}}\)
\(\newcommand{\kappaup}{\unicode{x03BA}}\)
\(\newcommand{\varkappaup}{\unicode{x03F0}}\)
\(\newcommand{\lambdaup}{\unicode{x03BB}}\)
\(\newcommand{\muup}{\unicode{x03BC}}\)
\(\newcommand{\nuup}{\unicode{x03BD}}\)
\(\newcommand{\xiup}{\unicode{x03BE}}\)
\(\newcommand{\omicronup}{\unicode{x03BF}}\)
\(\newcommand{\piup}{\unicode{x03C0}}\)
\(\newcommand{\varpiup}{\unicode{x03D6}}\)
\(\newcommand{\rhoup}{\unicode{x03C1}}\)
\(\newcommand{\varrhoup}{\unicode{x03F1}}\)
\(\newcommand{\sigmaup}{\unicode{x03C3}}\)
\(\newcommand{\varsigmaup}{\unicode{x03C2}}\)
\(\newcommand{\tauup}{\unicode{x03C4}}\)
\(\newcommand{\upsilonup}{\unicode{x03C5}}\)
\(\newcommand{\phiup}{\unicode{x03D5}}\)
\(\newcommand{\varphiup}{\unicode{x03C6}}\)
\(\newcommand{\chiup}{\unicode{x03C7}}\)
\(\newcommand{\psiup}{\unicode{x03C8}}\)
\(\newcommand{\omegaup}{\unicode{x03C9}}\)
\(\newcommand{\Alphaup}{\unicode{x0391}}\)
\(\newcommand{\Betaup}{\unicode{x0392}}\)
\(\newcommand{\Gammaup}{\unicode{x0393}}\)
\(\newcommand{\Digammaup}{\unicode{x03DC}}\)
\(\newcommand{\Deltaup}{\unicode{x0394}}\)
\(\newcommand{\Epsilonup}{\unicode{x0395}}\)
\(\newcommand{\Zetaup}{\unicode{x0396}}\)
\(\newcommand{\Etaup}{\unicode{x0397}}\)
\(\newcommand{\Thetaup}{\unicode{x0398}}\)
\(\newcommand{\Varthetaup}{\unicode{x03F4}}\)
\(\newcommand{\Iotaup}{\unicode{x0399}}\)
\(\newcommand{\Kappaup}{\unicode{x039A}}\)
\(\newcommand{\Lambdaup}{\unicode{x039B}}\)
\(\newcommand{\Muup}{\unicode{x039C}}\)
\(\newcommand{\Nuup}{\unicode{x039D}}\)
\(\newcommand{\Xiup}{\unicode{x039E}}\)
\(\newcommand{\Omicronup}{\unicode{x039F}}\)
\(\newcommand{\Piup}{\unicode{x03A0}}\)
\(\newcommand{\Varpiup}{\unicode{x03D6}}\)
\(\newcommand{\Rhoup}{\unicode{x03A1}}\)
\(\newcommand{\Sigmaup}{\unicode{x03A3}}\)
\(\newcommand{\Tauup}{\unicode{x03A4}}\)
\(\newcommand{\Upsilonup}{\unicode{x03A5}}\)
\(\newcommand{\Phiup}{\unicode{x03A6}}\)
\(\newcommand{\Chiup}{\unicode{x03A7}}\)
\(\newcommand{\Psiup}{\unicode{x03A8}}\)
\(\newcommand{\Omegaup}{\unicode{x03A9}}\)
\(\newcommand{\alphait}{\unicode{x1D6FC}}\)
\(\newcommand{\betait}{\unicode{x1D6FD}}\)
\(\newcommand{\gammait}{\unicode{x1D6FE}}\)
\(\newcommand{\digammait}{\mathit{\unicode{x03DD}}}\)
\(\newcommand{\deltait}{\unicode{x1D6FF}}\)
\(\newcommand{\epsilonit}{\unicode{x1D716}}\)
\(\newcommand{\varepsilonit}{\unicode{x1D700}}\)
\(\newcommand{\zetait}{\unicode{x1D701}}\)
\(\newcommand{\etait}{\unicode{x1D702}}\)
\(\newcommand{\thetait}{\unicode{x1D703}}\)
\(\newcommand{\varthetait}{\unicode{x1D717}}\)
\(\newcommand{\iotait}{\unicode{x1D704}}\)
\(\newcommand{\kappait}{\unicode{x1D705}}\)
\(\newcommand{\varkappait}{\unicode{x1D718}}\)
\(\newcommand{\lambdait}{\unicode{x1D706}}\)
\(\newcommand{\muit}{\unicode{x1D707}}\)
\(\newcommand{\nuit}{\unicode{x1D708}}\)
\(\newcommand{\xiit}{\unicode{x1D709}}\)
\(\newcommand{\omicronit}{\unicode{x1D70A}}\)
\(\newcommand{\piit}{\unicode{x1D70B}}\)
\(\newcommand{\varpiit}{\unicode{x1D71B}}\)
\(\newcommand{\rhoit}{\unicode{x1D70C}}\)
\(\newcommand{\varrhoit}{\unicode{x1D71A}}\)
\(\newcommand{\sigmait}{\unicode{x1D70E}}\)
\(\newcommand{\varsigmait}{\unicode{x1D70D}}\)
\(\newcommand{\tauit}{\unicode{x1D70F}}\)
\(\newcommand{\upsilonit}{\unicode{x1D710}}\)
\(\newcommand{\phiit}{\unicode{x1D719}}\)
\(\newcommand{\varphiit}{\unicode{x1D711}}\)
\(\newcommand{\chiit}{\unicode{x1D712}}\)
\(\newcommand{\psiit}{\unicode{x1D713}}\)
\(\newcommand{\omegait}{\unicode{x1D714}}\)
\(\newcommand{\Alphait}{\unicode{x1D6E2}}\)
\(\newcommand{\Betait}{\unicode{x1D6E3}}\)
\(\newcommand{\Gammait}{\unicode{x1D6E4}}\)
\(\newcommand{\Digammait}{\mathit{\unicode{x03DC}}}\)
\(\newcommand{\Deltait}{\unicode{x1D6E5}}\)
\(\newcommand{\Epsilonit}{\unicode{x1D6E6}}\)
\(\newcommand{\Zetait}{\unicode{x1D6E7}}\)
\(\newcommand{\Etait}{\unicode{x1D6E8}}\)
\(\newcommand{\Thetait}{\unicode{x1D6E9}}\)
\(\newcommand{\Varthetait}{\unicode{x1D6F3}}\)
\(\newcommand{\Iotait}{\unicode{x1D6EA}}\)
\(\newcommand{\Kappait}{\unicode{x1D6EB}}\)
\(\newcommand{\Lambdait}{\unicode{x1D6EC}}\)
\(\newcommand{\Muit}{\unicode{x1D6ED}}\)
\(\newcommand{\Nuit}{\unicode{x1D6EE}}\)
\(\newcommand{\Xiit}{\unicode{x1D6EF}}\)
\(\newcommand{\Omicronit}{\unicode{x1D6F0}}\)
\(\newcommand{\Piit}{\unicode{x1D6F1}}\)
\(\newcommand{\Rhoit}{\unicode{x1D6F2}}\)
\(\newcommand{\Sigmait}{\unicode{x1D6F4}}\)
\(\newcommand{\Tauit}{\unicode{x1D6F5}}\)
\(\newcommand{\Upsilonit}{\unicode{x1D6F6}}\)
\(\newcommand{\Phiit}{\unicode{x1D6F7}}\)
\(\newcommand{\Chiit}{\unicode{x1D6F8}}\)
\(\newcommand{\Psiit}{\unicode{x1D6F9}}\)
\(\newcommand{\Omegait}{\unicode{x1D6FA}}\)
\(\let \digammaup \Digammaup \)
\(\renewcommand {\digammait }{\mathit {\digammaup }}\)
\(\newcommand {\smallin }{\unicode {x220A}}\)
\(\newcommand {\smallowns }{\unicode {x220D}}\)
\(\newcommand {\notsmallin }{\LWRoverlaysymbols {/}{\unicode {x220A}}}\)
\(\newcommand {\notsmallowns }{\LWRoverlaysymbols {/}{\unicode {x220D}}}\)
\(\newcommand {\rightangle }{\unicode {x221F}}\)
\(\newcommand {\intclockwise }{\unicode {x2231}}\)
\(\newcommand {\ointclockwise }{\unicode {x2232}}\)
\(\newcommand {\ointctrclockwise }{\unicode {x2233}}\)
\(\newcommand {\oiint }{\unicode {x222F}}\)
\(\newcommand {\oiiint }{\unicode {x2230}}\)
\(\newcommand {\ddag }{\unicode {x2021}}\)
\(\newcommand {\P }{\unicode {x00B6}}\)
\(\newcommand {\copyright }{\unicode {x00A9}}\)
\(\newcommand {\dag }{\unicode {x2020}}\)
\(\newcommand {\pounds }{\unicode {x00A3}}\)
\(\newcommand {\iddots }{\unicode {x22F0}}\)
\(\newcommand {\utimes }{\overline {\times }}\)
\(\newcommand {\dtimes }{\underline {\times }}\)
\(\newcommand {\udtimes }{\overline {\underline {\times }}}\)
\(\newcommand {\leftwave }{\left \{}\)
\(\newcommand {\rightwave }{\right \}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\newcommand {\cmidrule }[2][]{}\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\ang }[2][]{(\mathrm {#2})\degree }\)
\(\newcommand {\num }[2][]{\mathrm {#2}}\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\newcommand {\LWRSI }[2][]{\mathrm {#1\LWRSInumber \,#2}}\)
\(\newcommand {\SI }[2][]{\def \LWRSInumber {#2}\LWRSI }\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\mathrm {#2\,\unicode {x2013}\,#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\mathrm {#2\,#4\,\unicode {x2013}\,#3\,#4}}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\require {mhchem}\)
\(\require {cancel}\)
\(\newcommand {\fint }{âĺŊ}\)
\(\newcommand {\hdots }{\cdots }\)
\(\newcommand {\mathnormal }[1]{#1}\)
\(\newcommand {\vecs }[2]{\vec {#1}_{#2}}\)
\(\renewcommand {\AA }{\mathbb {A}}\)
\(\newcommand {\EE }{\mathbb {E}}\)
\(\newcommand {\PP }{\mathbb {P}}\)
\(\newcommand {\UU }{\mathbb {U}}\)
\(\newcommand {\XX }{\mathbb {X}}\)
\(\renewcommand {\C }{\mathcal {C}}\)
\(\renewcommand {\F }{\mathcal {F}}\)
\(\renewcommand {\H }{\mathcal {H}}\)
\(\renewcommand {\O }{\mathcal {O}}\)
\(\renewcommand {\S }{\mathcal {S}}\)
\(\newcommand {\GL }{\mathrm {GL}}\)
\(\newcommand {\eps }{\mathrm {eps}}\)
\(\renewcommand {\div }{\mathrm {div}}\)
\(\newcommand {\rot }{\mathrm {rot}}\)
\(\newcommand {\D }{\mathop {}\!\mathrm {D}}\)
\(\newcommand {\iu }{\text {i}}\)
\(\newcommand {\tr }{\text {tr}}\)
\(\newcommand {\Vor }{\mathrm {Vor}}\)
\(\newcommand {\Del }{\mathrm {Del}}\)
\(\newcommand {\Rang }{\text {Rang}}\)
\(\newcommand {\id }{\text {id}}\)
\(\newcommand {\sinc }{\operatorname {sinc}}\)
\(\newcommand {\code }[1]{\texttt {#1}}\)
\(\newcommand {\name }[1]{\textsc {#1}}\)
\(\newcommand {\smallpmatrix }[1]{\left (\begin {smallmatrix}#1\end {smallmatrix}\right )}\)
\(\newcommand {\matlab }{{\fontfamily {bch}\scshape \selectfont {}Matlab}}\)
\(\newcommand {\innerproduct }[1]{\left \langle {#1}\right \rangle }\)
\(\newcommand {\norm }[1]{\left \Vert {#1}\right \Vert }\)
\(\renewcommand {\natural }{\mathbb {N}}\)
\(\newcommand {\integer }{\mathbb {Z}}\)
\(\newcommand {\rational }{\mathbb {Q}}\)
\(\newcommand {\real }{\mathbb {R}}\)
\(\newcommand {\complex }{\mathbb {C}}\)
\(\renewcommand {\d }{\mathop {}\!\mathrm {d}}\)
\(\newcommand {\dr }{\d {}r}\)
\(\newcommand {\ds }{\d {}s}\)
\(\newcommand {\dt }{\d {}t}\)
\(\newcommand {\du }{\d {}u}\)
\(\newcommand {\dv }{\d {}v}\)
\(\newcommand {\dw }{\d {}w}\)
\(\newcommand {\dx }{\d {}x}\)
\(\newcommand {\dy }{\d {}y}\)
\(\newcommand {\dz }{\d {}z}\)
\(\newcommand {\dsigma }{\d {}\sigma }\)
\(\newcommand {\dphi }{\d {}\phi }\)
\(\newcommand {\dvarphi }{\d {}\varphi }\)
\(\newcommand {\dtau }{\d {}\tau }\)
\(\newcommand {\dxi }{\d {}\xi }\)
\(\newcommand {\dtheta }{\d {}\theta }\)
\(\newcommand {\tp }{\mathrm {T}}\)
1D-Polynom-Interpolation
Satz (Polynom-Interpolation): Seien \((x_i, y_i) \in \real ^2\) für \(i = 0, \dotsc , n\) gegeben, wobei \(x_i \not = x_j\) für \(i \not = j\). Dann gibt es genau ein interpolierendes
Polynom \(P_n(x) = \sum _{j=0}^n a_j x^j\) vom Grad \(\le n\).
Vandermonde-Matrix: Die Koeffizienten \(a_0, \dotsc , a_n\) lassen sich als Lösung des LGS
\(\smallpmatrix {1&x_0&\dots &x_0^n\\\vdots &\vdots &&\vdots \\1&x_n&\dots &x_n^n} \smallpmatrix {a_0\\\vdots \\a_n} = \smallpmatrix {y_0\\\vdots \\y_n}
\iff V\vec {a} = \vec {y}\) bestimmen. \(V\) heißt Vandermonde-Matrix. Allerdings ist \(V\) schwierig und teuer zu berechnen und weitere
Interpolationspkt.e sind aufwendig.
Lagrange-Interpolation: Die Lagrange-Interpolation bestimmt \(P_n\) durch den Ansatz \(P_n(x) =
\sum _{i=0}^n y_i L_i(x)\) mit den Lagrange-Polynomen \(L_i(x) := \prod _{j\not =i} \frac {x - x_j}{x_i - x_j}\). \(L_i\) ist ein
Polynom vom Grad \(n\) mit \(L_i(x_k) = \delta _{i,k}\).
Newton-Interpolation: Die Newton-Interpolation bestimmt \(P_n\) durch den Ansatz
\(P_n(x) = \sum _{i=0}^n a_i N_i(x)\) mit den Newton-Polynomen \(N_0(x) := 1\) und \(N_i(x) := \prod _{j=0}^{i-1} (x - x_j)\)
für \(i = 1, \dotsc , n\). Wegen der rekursiven Definition (\(N_i(x) = (x - x_{i-1}) N_{i-1}(x)\)) gilt \(N_i(x_k) = 0\) für \(i > k\). Damit ist das resultierende LGS für die \(a_i\) in
unterem Dreiecksformat und ein zusätzlicher Samplepunkt \(x_{n+1}\) verändert \(a_0, \dotsc , a_n\) nicht. Außerdem ist dieser Ansatz numerisch stabiler.
Kubische 1D-Interpolation
kubische 1D-Interpolation: Seien \(y_0, y_0’, y_1, y_1’ \in \real \) gegeben. Gesucht ist ein höchstens kubisches Polynom \(f(x) = ax^3 + bx^2 + cx + d\) mit \(f(i) = y_i\) und \(f’(i) =
y_i’\) für \(i = 0, 1\). Man erhält das reguläre LGS \(A (a, b, c, d)^\tp = \vec {v}\) mit \(A := \smallpmatrix
{0&0&0&1\\0&0&1&0\\3&2&1&0\\1&1&1&1}\) und \(\vec {v} := (y_0, y_0’, y_1’, y_1)^\tp \). Damit bekommt man \(f(x) = (a, b, c, d) (x^3, x^2, x,
1)^\tp = \vec {v}^\tp A^{-\tp } (x^3, x^2, x, 1)^\tp \) mit den
kubischen Hermite-Polynomen \(\smallpmatrix {H_0^3(x)\\H_1^3(x)\\H_2^3(x)\\H_3^3(x)} = A^{-\tp } (x^3, x^2, x, 1)^\tp =
\smallpmatrix {(2x+1)(1-x)^2\\x(1-x)^2\\-x^2(1-x)\\(3-2x)x^2}\)
Bikubische Interpolation
bikubische Interpolation: Gegeben seien \(\vecs {f}{i,j} = (x_i, y_j)^\tp \) für \(x_i, y_j \in \{0, 1\}\) und Werte
\(z_{i,j}, \partial _x z_{i,j}, \partial _y z_{i,j}, \partial _x \partial _y z_{i,j} \in \real \). Gesucht ist bei der bikubischen Interpolation das bikubische
Polynom \(f(x, y) = \sum _{n=0}^3 \sum _{m=0}^3 a_{n,m} x^n y^m\) mit \(f(\vecs {p}{i,j}) = z_{i,j}\), \(\partial _x f(\vecs {p}{i,j}) = \partial _x z_{i,j}\), \(\partial _y f(\vecs {p}{i,j}) =
\partial _y z_{i,j}\) und \(\partial _x \partial _y f(\vecs {p}{i,j}) = \partial _x \partial _y z_{i,j}\). Schreibt man \(\vec {\alpha } := (a_{0,0}, a_{1,0}, a_{2,0}, a_{3,0}, a_{0,1}, \dotsc ,
a_{3,3})^\tp \) und
\(\vec {z} = (z_{0,0}, z_{1,0}, z_{0,1}, z_{1,1}, \partial _x z_{0,0}, \dotsc , \partial _x \partial _y z_{1,1})^\tp \), dann erhält man ein LGS \(B\vec {\alpha } = \vec {z}\) mit einer \((16
\times 16)\)-Matrix \(B\). Es gilt dann \(\vec {\alpha } = B^{-1} \vec {z}\).
bikubische Interpolation mit Hermite-Polynomen: Man kann den Ansatz auch schreiben als \(f(x, y) = \vec {y}^\tp A \vec {x}\) mit \(\vec {x} := (1, x, x^2, x^3)^\tp =
C^\tp \vecs {h}{x}\), \(\vecs {h}{x} := (H_0^3(x), \dotsc , H_3^3(x))^\tp \) und einer bestimmten Basiswechsel-Matrix \(C = \smallpmatrix
{1&0&0&0\\0&1&0&0\\0&1&2&3\\1&1&1&1}\), die man aus \(C^{-1} = \smallpmatrix
{1&0&0&0\\0&1&0&0\\-3&-2&-1&3\\2&1&1&-2}\) erhält (analog \(\vec {y} = C^\tp \vecs {h}{y}\)). Damit bekommt man \(f(x, y) = \vecs {h}{y}^\tp
C A C^\tp \vecs {h}{x}\). Man kann zeigen, dass
\(CAC^\tp = F := \smallpmatrix {f(0,0)&f_x(0,0)&f_x(1,0)&f(1,0)\\ f_y(0,0)&f_{xy}(0,0)&f_{xy}(1,0)&f_y(1,0)\\ f_y(0,1)&f_{xy}(0,1)&f_{xy}(1,1)&f_y(1,1)\\
f(0,1)&f_x(0,1)&f_x(1,1)&f(1,1)}\) bzw. \(A = C^{-1} F C^{-\tp }\).
Interpolation auf Dreiecken
baryzentrische Koordinaten: Seien \(\vec {a}, \vec {b}, \vec {c} \in \real ^2\) nicht kollinear. Dann gibt es für \(\vec {p} \in \real ^2\) baryzentrische
Koordinaten \(\alpha _1, \alpha _2, \alpha _3 \in \real \) mit \(\vec {p} = \alpha _1 \vec {a} + \alpha _2 \vec {b} + \alpha _3 \vec {c}\) und \(\alpha _1 + \alpha _2 + \alpha _3 =
1\).
Durch Umschreiben \(\vec {p} - \vec {c} = \alpha _1 (\vec {a} - \vec {c}) + \alpha _2 (\vec {b} - \vec {c})\) erhält man \((\alpha _1, \alpha _2)^\tp = T^{-1} (\vec {p} - \vec {c})\) mit
\(T := \smallpmatrix {\vec {a} - \vec {c} & \vec {b} - \vec {c}}\). Durch Ausschreiben der Inverse und Multiplikation bekommt man
\(\alpha _1 = \frac {1}{D} \det (\smallpmatrix {\vec {p} - \vec {c} & \vec {b} - \vec {c}})\), \(\alpha _2 = \frac {1}{D} \det (\smallpmatrix {\vec {a} - \vec {c} & \vec {p} - \vec
{c}})\) und \(\alpha _3 = \frac {1}{D} \det (\smallpmatrix {\vec {b} - \vec {a} & \vec {p} - \vec {a}})\) mit der Determinate \(D := \det (T)\) (doppelter Flächeninhalt des Dreiecks).
geometrische Interpretation: \(\alpha _1\) ist der Anteil der Fläche des Dreiecks mit der zu \(\vec {a}\) gegenüber liegender Kante \(\vec {b} - \vec {c}\) als Kante und Ecke \(\vec {p}\) am
gesamten Dreieck (falls \(\vec {p}\) im Dreieck liegt). Ob \(\vec {p}\) im Dreieck, auf einer Ecke/Kante oder außerhalb liegt, kann man leicht an den baryzentrischen Koordinaten ablesen.
Transformation zu Einheitsdreieck: Mit der Transformation \(x = a_x + (b_x - a_x) \xi + (c_x - a_x)\eta \) und \(y = a_y + (b_y - a_y) \xi + (c_y - a_y)\eta \) transformiert man ein Dreieck mit den
Ecken \(\vec {a}, \vec {b}, \vec {c}\) auf das Einheitsdreieck. Im Einheitsdreieck gilt \(\alpha _1 = 1 - \xi - \eta \), \(\alpha _2 = \xi \) und \(\alpha _3 = \eta \).
baryzentrische Interpolation: Seien Werte \(f_1, f_2, f_3 \in \real \) an den Ecken des Dreiecks gegeben. Dann erhält man baryzentrische Interpolation
durch \(f(\vec {p}) = \sum _{i=1}^3 \alpha _i(\vec {p}) f_i\).
quadratische Interpolation: Für quadr. Interpolation im Standarddreieck sei der Ansatz \(\vec {f}(\xi , \eta ) = \sum _{i=1}^6 f_i N_i(\xi , \eta )\) gegeben mit \(N_i(\xi _j, \eta _j) =
\delta _{i,j}\) für \((\xi _1, \eta _1) := (0, 0)\), \((\xi _2, \eta _2) := (1, 0)\), \((\xi _3, \eta _3) := (0, 1)\), \((\xi _4, \eta _4) := (1/2, 0)\), \((\xi _5, \eta _5) := (1/2, 1/2)\)
und \((\xi _6, \eta _6) := (0, 1/2)\).
Man erhält \(N_1(\xi , \eta ) = (1 - \xi - \eta ) (1 - 2\xi - 2\eta )\), \(N_2(\xi , \eta ) = \xi (2\xi - 1)\), \(N_3(\xi , \eta ) = \eta (2\eta - 1)\), \(N_4(\xi , \eta ) = 4\xi (1 - \xi -
\eta )\), \(N_5(\xi , \eta ) = 4\xi \eta \) und \(N_6(\xi , \eta ) = 4\eta (1 - \xi - \eta )\).
kubische Interpolation: Man kann den Ansatz auch für höhere Ordnungen verallgemeinern. Zum Beispiel wäre der kubische Ansatz
\(u(\xi , \eta ) = c_1 + c_2\xi + c_3\eta + c_4\xi ^2 + c_5\xi \eta + c_6\eta ^2 + c_7\xi ^3 + c_8\xi ^2\eta + c_9\xi \eta ^2 + c_{10}\eta ^3\).
Bikubische Interpolation auf krummlinigen Gittern
krummlinige Gitter: Zur Interpolation auf krummlinigen Gittern muss man die Ableitungen, die im physischen Raum (P-Raum) mit Koord.en \((x, y)\) gegeben sind,
umrechnen auf den Berechnungsraum (C-Raum) mit Koord.en \((\xi , \eta )\). Im C-Raum sollte das Gitter ein uniformes 2D-Rechtecksgitter mit Gitterabständen
\(\Delta \xi = 1 = \Delta \eta \) sein.
Umrechnung der Ableitungen: Für \(\vecs {\partial }{xy} := (\partial _x, \partial _y, \partial _x^2, \partial _x \partial _y, \partial _y^2)^\tp \) und
\(\vecs {\partial }{\xi \eta } := (\partial _\xi , \partial _\eta , \partial _\xi ^2, \partial _\xi \partial _\eta , \partial _\eta ^2)^\tp \) erhält man \(\vecs {\partial }{xy} = B\vecs
{\partial }{\xi \eta }\) mit \(B := \smallpmatrix {B_1&0\\B_2&B_3}\) und
\(B_1 := \smallpmatrix {\partial _x \xi &\partial _x \eta \\\partial _y \xi &\partial _y \eta }\), \(B_2 := \smallpmatrix {\partial _x^2 \xi &\partial _x^2 \eta \\\partial _x
\partial _y \xi & \partial _x \partial _y \eta \\\partial _y^2 \xi &\partial _y^2 \eta }\) sowie \(B_3 := \smallpmatrix {(\partial _x \xi )^2&2\partial _x \xi \cdot \partial _x \eta
& (\partial _x \eta )^2\\ \partial _x \xi \cdot \partial _y \xi & \partial _x \xi \cdot \partial _y \eta + \partial _x \eta \cdot \partial _y \xi & \partial _x \eta \cdot \partial
_y \eta \\ (\partial _y \xi )^2&2\partial _y \xi \cdot \partial _y \eta &(\partial _y \eta )^2}\).
Umgekehrt gilt \(\vecs {\partial }{\xi \eta } = C\vecs {\partial }{xy}\) mit \(C := B^{-1} = \smallpmatrix {C_1&0\\C_2&C_3}\) und
\(C_1 := B_1^{-1} = \smallpmatrix {\partial _\xi x&\partial _\xi y\\\partial _\eta x&\partial _\eta y}\), \(C_2 := -B_3^{-1} B_2 B_1^{-1} = \smallpmatrix {\partial _x^2 x&\partial
_\xi ^2 y\\\partial _\xi \partial _\eta x& \partial _\xi \partial _\eta y\\\partial _\eta ^2 x&\partial _\eta ^2 y}\) sowie
\(C_3 := B_3^{-1} = \smallpmatrix {(\partial _\xi x)^2&2\partial _\xi x \cdot \partial _\xi y& (\partial _\xi y)^2\\ \partial _\xi x \cdot \partial _\eta x& \partial _\xi x \cdot
\partial _\eta y + \partial _\xi y \cdot \partial _\eta x& \partial _\xi y \cdot \partial _\eta y\\ (\partial _\eta x)^2&2\partial _\eta x \cdot \partial _\eta y&(\partial _\eta
y)^2}\).