\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\underset {#3}{\underline {#1}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\overset {#3}{\overline {#1}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LATEXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LATEXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\mathop \ordinarycolon }}\)
\(\newcommand \dblcolon {\vcentcolon \vcentcolon }\)
\(\newcommand \coloneqq {\vcentcolon =}\)
\(\newcommand \Coloneqq {\dblcolon =}\)
\(\newcommand \coloneq {\vcentcolon {-}}\)
\(\newcommand \Coloneq {\dblcolon {-}}\)
\(\newcommand \eqqcolon {=\vcentcolon }\)
\(\newcommand \Eqqcolon {=\dblcolon }\)
\(\newcommand \eqcolon {\mathrel {-}\vcentcolon }\)
\(\newcommand \Eqcolon {\mathrel {-}\dblcolon }\)
\(\newcommand \colonapprox {\vcentcolon \approx }\)
\(\newcommand \Colonapprox {\dblcolon \approx }\)
\(\newcommand \colonsim {\vcentcolon \sim }\)
\(\newcommand \Colonsim {\dblcolon \sim }\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\)
\(\newcommand{\alphaup}{\unicode{x03B1}}\)
\(\newcommand{\betaup}{\unicode{x03B2}}\)
\(\newcommand{\gammaup}{\unicode{x03B3}}\)
\(\newcommand{\digammaup}{\unicode{x03DD}}\)
\(\newcommand{\deltaup}{\unicode{x03B4}}\)
\(\newcommand{\epsilonup}{\unicode{x03F5}}\)
\(\newcommand{\varepsilonup}{\unicode{x03B5}}\)
\(\newcommand{\zetaup}{\unicode{x03B6}}\)
\(\newcommand{\etaup}{\unicode{x03B7}}\)
\(\newcommand{\thetaup}{\unicode{x03B8}}\)
\(\newcommand{\varthetaup}{\unicode{x03D1}}\)
\(\newcommand{\iotaup}{\unicode{x03B9}}\)
\(\newcommand{\kappaup}{\unicode{x03BA}}\)
\(\newcommand{\varkappaup}{\unicode{x03F0}}\)
\(\newcommand{\lambdaup}{\unicode{x03BB}}\)
\(\newcommand{\muup}{\unicode{x03BC}}\)
\(\newcommand{\nuup}{\unicode{x03BD}}\)
\(\newcommand{\xiup}{\unicode{x03BE}}\)
\(\newcommand{\omicronup}{\unicode{x03BF}}\)
\(\newcommand{\piup}{\unicode{x03C0}}\)
\(\newcommand{\varpiup}{\unicode{x03D6}}\)
\(\newcommand{\rhoup}{\unicode{x03C1}}\)
\(\newcommand{\varrhoup}{\unicode{x03F1}}\)
\(\newcommand{\sigmaup}{\unicode{x03C3}}\)
\(\newcommand{\varsigmaup}{\unicode{x03C2}}\)
\(\newcommand{\tauup}{\unicode{x03C4}}\)
\(\newcommand{\upsilonup}{\unicode{x03C5}}\)
\(\newcommand{\phiup}{\unicode{x03D5}}\)
\(\newcommand{\varphiup}{\unicode{x03C6}}\)
\(\newcommand{\chiup}{\unicode{x03C7}}\)
\(\newcommand{\psiup}{\unicode{x03C8}}\)
\(\newcommand{\omegaup}{\unicode{x03C9}}\)
\(\newcommand{\Alphaup}{\unicode{x0391}}\)
\(\newcommand{\Betaup}{\unicode{x0392}}\)
\(\newcommand{\Gammaup}{\unicode{x0393}}\)
\(\newcommand{\Digammaup}{\unicode{x03DC}}\)
\(\newcommand{\Deltaup}{\unicode{x0394}}\)
\(\newcommand{\Epsilonup}{\unicode{x0395}}\)
\(\newcommand{\Zetaup}{\unicode{x0396}}\)
\(\newcommand{\Etaup}{\unicode{x0397}}\)
\(\newcommand{\Thetaup}{\unicode{x0398}}\)
\(\newcommand{\Varthetaup}{\unicode{x03F4}}\)
\(\newcommand{\Iotaup}{\unicode{x0399}}\)
\(\newcommand{\Kappaup}{\unicode{x039A}}\)
\(\newcommand{\Lambdaup}{\unicode{x039B}}\)
\(\newcommand{\Muup}{\unicode{x039C}}\)
\(\newcommand{\Nuup}{\unicode{x039D}}\)
\(\newcommand{\Xiup}{\unicode{x039E}}\)
\(\newcommand{\Omicronup}{\unicode{x039F}}\)
\(\newcommand{\Piup}{\unicode{x03A0}}\)
\(\newcommand{\Varpiup}{\unicode{x03D6}}\)
\(\newcommand{\Rhoup}{\unicode{x03A1}}\)
\(\newcommand{\Sigmaup}{\unicode{x03A3}}\)
\(\newcommand{\Tauup}{\unicode{x03A4}}\)
\(\newcommand{\Upsilonup}{\unicode{x03A5}}\)
\(\newcommand{\Phiup}{\unicode{x03A6}}\)
\(\newcommand{\Chiup}{\unicode{x03A7}}\)
\(\newcommand{\Psiup}{\unicode{x03A8}}\)
\(\newcommand{\Omegaup}{\unicode{x03A9}}\)
\(\newcommand{\alphait}{\unicode{x1D6FC}}\)
\(\newcommand{\betait}{\unicode{x1D6FD}}\)
\(\newcommand{\gammait}{\unicode{x1D6FE}}\)
\(\newcommand{\digammait}{\mathit{\unicode{x03DD}}}\)
\(\newcommand{\deltait}{\unicode{x1D6FF}}\)
\(\newcommand{\epsilonit}{\unicode{x1D716}}\)
\(\newcommand{\varepsilonit}{\unicode{x1D700}}\)
\(\newcommand{\zetait}{\unicode{x1D701}}\)
\(\newcommand{\etait}{\unicode{x1D702}}\)
\(\newcommand{\thetait}{\unicode{x1D703}}\)
\(\newcommand{\varthetait}{\unicode{x1D717}}\)
\(\newcommand{\iotait}{\unicode{x1D704}}\)
\(\newcommand{\kappait}{\unicode{x1D705}}\)
\(\newcommand{\varkappait}{\unicode{x1D718}}\)
\(\newcommand{\lambdait}{\unicode{x1D706}}\)
\(\newcommand{\muit}{\unicode{x1D707}}\)
\(\newcommand{\nuit}{\unicode{x1D708}}\)
\(\newcommand{\xiit}{\unicode{x1D709}}\)
\(\newcommand{\omicronit}{\unicode{x1D70A}}\)
\(\newcommand{\piit}{\unicode{x1D70B}}\)
\(\newcommand{\varpiit}{\unicode{x1D71B}}\)
\(\newcommand{\rhoit}{\unicode{x1D70C}}\)
\(\newcommand{\varrhoit}{\unicode{x1D71A}}\)
\(\newcommand{\sigmait}{\unicode{x1D70E}}\)
\(\newcommand{\varsigmait}{\unicode{x1D70D}}\)
\(\newcommand{\tauit}{\unicode{x1D70F}}\)
\(\newcommand{\upsilonit}{\unicode{x1D710}}\)
\(\newcommand{\phiit}{\unicode{x1D719}}\)
\(\newcommand{\varphiit}{\unicode{x1D711}}\)
\(\newcommand{\chiit}{\unicode{x1D712}}\)
\(\newcommand{\psiit}{\unicode{x1D713}}\)
\(\newcommand{\omegait}{\unicode{x1D714}}\)
\(\newcommand{\Alphait}{\unicode{x1D6E2}}\)
\(\newcommand{\Betait}{\unicode{x1D6E3}}\)
\(\newcommand{\Gammait}{\unicode{x1D6E4}}\)
\(\newcommand{\Digammait}{\mathit{\unicode{x03DC}}}\)
\(\newcommand{\Deltait}{\unicode{x1D6E5}}\)
\(\newcommand{\Epsilonit}{\unicode{x1D6E6}}\)
\(\newcommand{\Zetait}{\unicode{x1D6E7}}\)
\(\newcommand{\Etait}{\unicode{x1D6E8}}\)
\(\newcommand{\Thetait}{\unicode{x1D6E9}}\)
\(\newcommand{\Varthetait}{\unicode{x1D6F3}}\)
\(\newcommand{\Iotait}{\unicode{x1D6EA}}\)
\(\newcommand{\Kappait}{\unicode{x1D6EB}}\)
\(\newcommand{\Lambdait}{\unicode{x1D6EC}}\)
\(\newcommand{\Muit}{\unicode{x1D6ED}}\)
\(\newcommand{\Nuit}{\unicode{x1D6EE}}\)
\(\newcommand{\Xiit}{\unicode{x1D6EF}}\)
\(\newcommand{\Omicronit}{\unicode{x1D6F0}}\)
\(\newcommand{\Piit}{\unicode{x1D6F1}}\)
\(\newcommand{\Rhoit}{\unicode{x1D6F2}}\)
\(\newcommand{\Sigmait}{\unicode{x1D6F4}}\)
\(\newcommand{\Tauit}{\unicode{x1D6F5}}\)
\(\newcommand{\Upsilonit}{\unicode{x1D6F6}}\)
\(\newcommand{\Phiit}{\unicode{x1D6F7}}\)
\(\newcommand{\Chiit}{\unicode{x1D6F8}}\)
\(\newcommand{\Psiit}{\unicode{x1D6F9}}\)
\(\newcommand{\Omegait}{\unicode{x1D6FA}}\)
\(\let \digammaup \Digammaup \)
\(\renewcommand {\digammait }{\mathit {\digammaup }}\)
\(\newcommand {\smallin }{\unicode {x220A}}\)
\(\newcommand {\smallowns }{\unicode {x220D}}\)
\(\newcommand {\notsmallin }{\LWRoverlaysymbols {/}{\unicode {x220A}}}\)
\(\newcommand {\notsmallowns }{\LWRoverlaysymbols {/}{\unicode {x220D}}}\)
\(\newcommand {\rightangle }{\unicode {x221F}}\)
\(\newcommand {\intclockwise }{\unicode {x2231}}\)
\(\newcommand {\ointclockwise }{\unicode {x2232}}\)
\(\newcommand {\ointctrclockwise }{\unicode {x2233}}\)
\(\newcommand {\oiint }{\unicode {x222F}}\)
\(\newcommand {\oiiint }{\unicode {x2230}}\)
\(\newcommand {\ddag }{\unicode {x2021}}\)
\(\newcommand {\P }{\unicode {x00B6}}\)
\(\newcommand {\copyright }{\unicode {x00A9}}\)
\(\newcommand {\dag }{\unicode {x2020}}\)
\(\newcommand {\pounds }{\unicode {x00A3}}\)
\(\newcommand {\iddots }{\unicode {x22F0}}\)
\(\newcommand {\utimes }{\overline {\times }}\)
\(\newcommand {\dtimes }{\underline {\times }}\)
\(\newcommand {\udtimes }{\overline {\underline {\times }}}\)
\(\newcommand {\leftwave }{\left \{}\)
\(\newcommand {\rightwave }{\right \}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\newcommand {\cmidrule }[2][]{}\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\ang }[2][]{(\mathrm {#2})\degree }\)
\(\newcommand {\num }[2][]{\mathrm {#2}}\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\newcommand {\LWRSI }[2][]{\mathrm {#1\LWRSInumber \,#2}}\)
\(\newcommand {\SI }[2][]{\def \LWRSInumber {#2}\LWRSI }\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\mathrm {#2\,\unicode {x2013}\,#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\mathrm {#2\,#4\,\unicode {x2013}\,#3\,#4}}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\require {mhchem}\)
\(\require {cancel}\)
\(\newcommand {\fint }{âĺŊ}\)
\(\newcommand {\hdots }{\cdots }\)
\(\newcommand {\mathnormal }[1]{#1}\)
\(\newcommand {\vecs }[2]{\vec {#1}_{#2}}\)
\(\renewcommand {\A }{\mathcal {A}}\)
\(\renewcommand {\C }{\mathcal {C}}\)
\(\newcommand {\D }{\text {D}}\)
\(\newcommand {\E }{\mathcal {E}}\)
\(\renewcommand {\F }{\mathcal {F}}\)
\(\renewcommand {\L }{\mathcal {L}}\)
\(\renewcommand {\N }{\mathcal {N}}\)
\(\renewcommand {\O }{\mathcal {O}}\)
\(\renewcommand {\P }{\mathcal {P}}\)
\(\renewcommand {\S }{\mathcal {S}}\)
\(\newcommand {\T }{\mathcal {T}}\)
\(\newcommand {\BB }{\mathbb {B}}\)
\(\newcommand {\PP }{\mathbb {P}}\)
\(\newcommand {\hol }{\text {höl}}\)
\(\newcommand {\Lip }{\text {Lip}}\)
\(\newcommand {\esssup }{\text {ess\,sup}}\)
\(\newcommand {\loc }{\text {loc}}\)
\(\newcommand {\supp }{\operatorname {supp}}\)
\(\newcommand {\grad }{\operatorname {grad}}\)
\(\renewcommand {\div }{\operatorname {div}}\)
\(\newcommand {\rot }{\operatorname {rot}}\)
\(\newcommand {\kin }{\text {kin}}\)
\(\newcommand {\pot }{\text {pot}}\)
\(\newcommand {\Bild }{\operatorname {Bild}}\)
\(\newcommand {\Rang }{\operatorname {Rang}}\)
\(\newcommand {\id }{\operatorname {id}}\)
\(\newcommand {\sgn }{\operatorname {sgn}}\)
\(\newcommand {\diam }{\operatorname {diam}}\)
\(\newcommand {\argmin }{\operatorname {arg\,min}}\)
\(\newcommand {\dcup }{\mathbin {\dot {\cup }}}\)
\(\newcommand {\Span }{\operatorname {Span}}\)
\(\newcommand {\Conv }{\operatorname {Conv}}\)
\(\newcommand {\interior }{\operatorname {int}}\)
\(\newcommand {\name }[1]{\textsc {#1}}\)
\(\newcommand {\smallpmatrix }[1]{\left (\begin {smallmatrix}#1\end {smallmatrix}\right )}\)
\(\newcommand {\matlab }{{\fontfamily {bch}\scshape \selectfont {}Matlab}}\)
\(\newcommand {\innerproduct }[1]{\left \langle {#1}\right \rangle }\)
\(\newcommand {\norm }[1]{\left \Vert {#1}\right \Vert }\)
\(\renewcommand {\natural }{\mathbb {N}}\)
\(\newcommand {\integer }{\mathbb {Z}}\)
\(\newcommand {\rational }{\mathbb {Q}}\)
\(\newcommand {\real }{\mathbb {R}}\)
\(\newcommand {\complex }{\mathbb {C}}\)
\(\renewcommand {\d }{\mathop {}\!\mathrm {d}}\)
\(\newcommand {\dr }{\d {}r}\)
\(\newcommand {\ds }{\d {}s}\)
\(\newcommand {\dt }{\d {}t}\)
\(\newcommand {\du }{\d {}u}\)
\(\newcommand {\dv }{\d {}v}\)
\(\newcommand {\dw }{\d {}w}\)
\(\newcommand {\dx }{\d {}x}\)
\(\newcommand {\dy }{\d {}y}\)
\(\newcommand {\dz }{\d {}z}\)
\(\newcommand {\dsigma }{\d {}\sigma }\)
\(\newcommand {\dphi }{\d {}\phi }\)
\(\newcommand {\dvarphi }{\d {}\varphi }\)
\(\newcommand {\dtau }{\d {}\tau }\)
\(\newcommand {\dxi }{\d {}\xi }\)
\(\newcommand {\dtheta }{\d {}\theta }\)
\(\newcommand {\tp }{\mathrm {T}}\)
Alle Funktionen hängen von \((x, t) \in \Omega _T\) ab, soweit nicht anders erklärt. Es ist \(\div := \div _x\) und \(\Delta := \Delta _x\).
DGL
|
Name
|
Herleitung
|
\(\partial _t u + \div F = G\)
|
Transport-Reaktionsgleichung
|
Massenbilanz in Kontrollvolumen, \(F(x,t) \in \real ^d\) Fluss, \(G(x,t) \in \real \) Konz.gewinn
|
\(\partial _t u = G(x, t, u(x,t))\)
|
parametrisierte ODE
|
aus TRGL: \(F :\equiv 0\), \(G\) \(u\)-abhängig
|
\(\partial _t u + \div (vu) = 0\)
|
Advektionsgleichung
|
aus TRGL: \(F := vu\) mit \(v \in \C ^1(\Omega _T, \real ^d)\) Geschw.feld, \(G :\equiv 0\)
|
\(\partial _t u + \div F(u) = 0\)
|
nicht-lineare Konvektionsgl.
|
aus TRGL: \(F := F(u)\), \(G :\equiv 0\)
|
\(\partial _t u + \partial _x (v(u) \cdot u) = 0\)
|
Konvektionsgleichung
|
aus nicht-linearer Konvektionsgl.: \(d := 1\), \(F(u) := v(u) \cdot u\)
|
\(\partial _t u + \partial _x(\frac {1}{2} u^2) = 0\)
|
Burgersgleichung
|
aus nicht-linearer Konvektionsgl.: \(d := 1\), \(F(u) := \frac {1}{2} u^2\)
|
\(\partial _t u - \div (a(x) \nabla u) = 0\)
|
allg. Diffusionsgleichung
|
aus TRGL: \(F := -a(x) \nabla u\) (Ficksches Gesetz) mit \(a \in \C ^1(\Omega )\) Diff.koeff., \(G :\equiv 0\)
|
\(\partial _t u - \Delta u = 0\)
|
Diffusionsgleichung/instat. WLG
|
aus allg. Diffusionsgleichung: \(a(x) :\equiv 1\)
|
\(-\Delta u = 0\)
|
Laplace-Gleichung
|
aus instat. Wärmeleitungsgleichung mit \(t \to \infty \) und \(u(\cdot , t) \to \overline {u}(\cdot ) \in \C ^2(\overline {\Omega })\) glm.
|
\(-\Delta u = f\)
|
Poisson-Gleichung
|
aus Laplace-Gleichung mit \(G := f(x)\)
|
\(-\div _x(\nabla _p L(\nabla u, u, x)) + \partial _z L(\nabla u, u, x) = 0\)
|
Euler-Lagrange-Gleichung
|
PDE für Lösung \(u\) des Variationsproblems \(I(u) \le I(w) := \int _\Omega L(\nabla w, w, x)\dx \)
|
\(-a_{11}(x) u’’(x) + c(x) u(x) = f(x)\)
|
Sturm-Liouville-Problem
|
aus ELGL: \(L(p, z, x) := \frac {1}{2} p^\tp A(x) p + \frac {1}{2} c(x) z^2 - z f(x)\), \(d := 1\), \(a_{11}(x) > 0\), \(c(x) > 0\)
|
\(\partial _t^2 u - c^2 \Delta u = 0\)
|
Wellengleichung
|
aus ELGL: \(L(p, z, x) := \frac {c^2}{2} \sum _{i=1}^d |p_i|^2 - \frac {1}{2} |p_{d+1}|^2\) aus Hamilton-Prinzip
|
\(-\Delta u + W’(u) = 0\)
|
stat. Allen-Cahn-Gleichung
|
aus ELGL: \(L(p, z, x) := W(z) + \frac {1}{2} \norm {p}^2\) mit z. B. \(W(z) := (z^2 - 1)^2\)
|
|
|
|
PDE
|
Problem
|
Definition/Satz
|
Voraussetzungen/Aussage
|
Advektions-gleichung |
konstante Adv.geschw. |
Definition
|
\(\Omega := \real ^d\), \(T := \infty \), \(b \in \real ^d\), \(u_0 \in \C ^1(\Omega )\) \(\implies \) \(\partial _t u + \div (bu) = 0\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \)
|
Translationsinv.
|
\(\forall _{(x, t) \in \Omega _T} \forall _{s \in (-t, T-t)}\; \frac {\d }{\ds } u(x + bs, t + s) = 0\)
|
Ex. + Eind.
|
\(u(x, t) := u_0(x - bt)\) eind. kl. Lsg.
|
\(L^\infty \)-Stabilität
|
\(u_0 \in \C ^1(\Omega ) \cap L^\infty (\Omega ) \implies \forall _{t \in (0, T)}\; \norm {u(\cdot , t)}_{L^\infty } \le \norm {u_0}_{L^\infty }\)
|
Max.-/Min.prinzip
|
\(u_0 \in \C ^1(\Omega ) \cap L^\infty (\Omega ) \implies \forall _{(x, t) \in \Omega _T}\; \inf _{\overline {x} \in \Omega } u_0(\overline {x}) \le u(x, t) \le \sup _{\overline {x} \in
\Omega } u_0(\overline {x})\)
|
st. Abh. von \(u_0\)
|
\(u_0, u_0’ \in \C ^1(\Omega ) \cap L^\infty (\Omega ) \implies \forall _{t \in (0, T)}\; \norm {u(\cdot , t) - u’(\cdot , t)}_{L^\infty } \le \norm {u_0 - u_0’}_{L^\infty }\)
|
keine st. Abh. von \(b\)
|
\(\lnot [\forall _{t \in (0, T)} \exists _{C(t) > 0} \forall _{u_0 \in \C ^1(\Omega ) \cap L^\infty (\Omega ), \norm {u_0}_{L^\infty } \le 1} \forall _{b, b’ \in \real }\; \norm {u(\cdot ,
t) - u’(\cdot , t)}_{L^\infty } \le C(t) \norm {b - b’}]\)
|
Reaktions-/ Quellterm |
Definition
|
\(q \in \C ^0(\Omega _T)\) \(\implies \) \(\partial _t u + \div (bu) = q\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \)
|
Ex. + Eind.
|
\(u(x, t) := u_0(x - bt) + \int _0^t q(x + (s-t)b, s)\ds \) eind. kl. Lsg.
|
nicht-lineare Konvektion |
Definition
|
\(\Omega := \real \), \(T > 0\), \(f \in \C ^2(\real )\), \(u_0 \in \C ^1(\Omega )\) \(\implies \) \(\partial _t u + \partial _x(f(u)) = 0\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \)
|
lokale Ex.
|
\(\norm {f’’}_\infty , \norm {u_0’}_\infty < \infty \implies \forall _{\overline {x} \in \real } \exists _{\varepsilon > 0} \exists _{T > 0} \exists _{u \in \C ^1(B_\varepsilon
(\overline {x}) \times (0, T))}\; [\text {$u$ kl. Lsg.}]\), \(u(x, t) = u_0(x - tf’(u(x, t)))\)
|
Poisson-Gleichung |
Laplace-Gleichung |
Definition
|
\(\Omega \subset \real ^d\) \(\implies \) \(-\Delta u = 0\) in \(\Omega \)
|
MW-Eigenschaft
|
\(u \in C^2(\Omega )\) harm., \(x \in \Omega \), \(r > 0\), \(\overline {B_r(x)} \subset \Omega \) \(\implies \fint _{B_r(y)} u(y) \dy = u(x) = \fint _{\partial B_r(x)} u(y) \dsigma (y)\)
|
Max.prinzip
|
\(\Omega \) offen, beschr., \(u \in \C ^2(\overline {\Omega })\) harm. \(\implies \max _{x \in \overline {\Omega }} u(x) = \max _{x \in \partial \Omega } u(x)\)
|
verallg. Max.prinz.
|
\(\Omega \) offen, beschr., \(u \in \C ^2(\Omega ) \cap \C ^0(\overline {\Omega })\), \(-\Delta u = f \le 0\) \(\implies \) \(u\) nimmt Max. auf dem Rand an
|
Vgl.prinzip
|
\(\Omega \) offen, beschr., \(u, v \in \C ^2(\Omega ) \cap \C ^0(\overline {\Omega })\), \(-\Delta u \le -\Delta v\) in \(\Omega \), \(u \le v\) auf \(\partial \Omega \) \(\implies \) \(u \le v\) in \(\Omega
\)
|
Regularität
|
\(\Omega := \real ^d\), \(u \in \C ^2(\Omega )\) harm. \(\implies u \in \C ^\infty (\Omega )\)
|
Fundamentallsg.
|
\(\Omega := \real ^d \setminus \{0\}\), \(d > 1\) \(\implies \Phi \in \C ^\infty (\Omega )\), \(\Phi (x) := -\frac {1}{2\pi } \cdot \ln (\norm {x})\) für \(d = 2\), \(\Phi (x) :=
\frac {1}{(d-2)\omega _d} \cdot \frac {1}{\norm {x}^{d-2}}\) für \(d \ge 3\)
|
Eigenschaften
|
\(\int _{B_\varepsilon (0)} \Phi (x)\dx \to 0\), \(\Phi \in L^1_\loc (\real ^d)\), \(\Phi (\varepsilon e_1) \varepsilon ^{d-1} \to 0\), \(\forall _{\varepsilon >0}\;
\int _{\partial B_\varepsilon (0)} \nabla \Phi (x) \cdot n\dsigma (x) = -1\)
|
Poisson-Gleichung |
Definition
|
\(\Omega \subset \real ^d\), \(f\colon \Omega \to \real \) \(\implies \) \(-\Delta u = f\) in \(\Omega \)
|
Rotationsinv.
|
\(u \in \C ^2(\Omega )\) kl. Lsg., \(O \in \real ^{d \times d}\) orth., \(\Omega = O\Omega \), \(f = f \circ O\) \(\implies v \in \C ^2(\Omega )\) kl. Lsg., \(v(x) := u(Ox)\)
|
Faltungslösung
|
\(\Omega := \real ^d\), \(d \ge 2\), \(f \in \C ^2_0(\Omega )\) \(\implies u := \Phi \ast f\) kl. Lsg.
|
Poisson-RWP |
Definition
|
\(\Omega \subset \real ^d\) offen, beschr., \(f \in \C ^0(\Omega )\), \(g \in \C ^0(\partial \Omega )\) \(\implies \) \(-\Delta u = f\) in \(\Omega \), \(u = g\) auf \(\partial \Omega \)
|
Eind.
|
es gibt höchstens eine kl. Lsg. \(u \in \C ^2(\Omega ) \cap \C ^0(\overline {\Omega })\)
|
st. Abh. von \(g\)
|
\(g, g’ \in \C ^0(\partial \Omega ) \implies \norm {u - u’}_\infty \le \norm {g - g’}_\infty \)
|
st. Abh. von \(f\)
|
\(f, f’ \in C^0(\Omega ) \implies \norm {u - u’}_\infty \le C \norm {f - f’}_\infty \), \(C := \frac {R^2}{2}\), \(R := \sup _{x \in \Omega } \norm {x}\)
|
|
|
|
|
PDE
|
Problem
|
Definition/Satz
|
Voraussetzungen/Aussage
|
Diffusions-gleichung |
AWP |
Definition
|
\(\Omega \subset \real ^d\), \(T > 0\), \(u_0\colon \Omega \to \real \) \(\implies \) \(\partial _t u - \Delta u = 0\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \)
|
Skal.inv.
|
\(\Omega := \real ^d\), \(T := \infty \), \(u \in \C ^2(\Omega _T)\) kl. Lsg., \(\lambda \in \real \) \(\implies u_\lambda \) kl. Lsg., \(u_\lambda (x, t) := u(\lambda x, \lambda ^2 t)\)
|
Fundamentallsg.
|
\(\Omega := \real ^d\), \(T := \infty \) \(\implies \Phi \in \C ^\infty (\Omega _T)\), \(\Phi (x, t) := \frac {1}{(4\pi t)^{d/2}} e^{-\norm {x}^2/(4t)}\)
|
Faltungslösung
|
\(\Omega := \real ^d\), \(T := \infty \), \(u_0 \in L^\infty (\Omega )\) \(\implies u \in \C ^\infty (\Omega _T)\), \(u(\cdot , t) := \Phi (\cdot , t) \ast u_0\) kl. Lsg.,
für \(u_0 \in \C ^0(\real )\) gilt \(\forall _{\overline {x} \in \Omega }\; \lim _{(x, t) \to (\overline {x}, 0)} u(x, t) = u_0(\overline {x})\), \(\forall _{t > 0}\; \norm {u(\cdot ,
t)}_{L^\infty } \le \norm {u_0}_{L^\infty }\)
|
ARWP |
Definition
|
\(g\colon \partial \Omega \times (0, T) \to \real \) \(\implies \) \(\partial _t u - \Delta u = 0\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \), \(u = g\) auf \(\partial \Omega \times (0,
T)\)
|
Max.prinzip
|
\(u\) nimmt Maximum auf parabolischem Rand \(\Gamma := (\Omega \times \{0\}) \cup (\partial \Omega \times [0, T])\) an
|
inhom. ARWP |
Definition
|
\(f\colon \Omega _T \to \real \) \(\implies \) \(\partial _t u - \Delta u = f\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \), \(u = g\) auf \(\partial \Omega \times (0, T)\)
|
Eind.
|
\(\Omega \subset \real ^d\) Lipschitz \(\implies \) es gibt höchstens eine kl. Lsg.
|
Konv. gg. stat. Lsg.
|
\(\Omega \subset \real ^d\) Lipschitz, \(f, g\) zeitunabh., \(-\Delta \overline {u} = f\) in \(\Omega \), \(\overline {u} = g\) auf \(\partial \Omega \) \(\implies \norm {u(\cdot , t) - \overline
{u}}_{L^2} \le e^{-t/c_p} \norm {u_0 - \overline {u}}_{L^2}\)
|
Wellen-gleichung |
AWP |
Definition
|
\(\Omega := \real ^d\), \(T > 0\), \(c > 0\), \(u_0 \in \C ^2(\Omega )\), \(v_0 \in \C ^1(\Omega )\) \(\implies \) \(\partial _t^2 u - c^2 \Delta u = 0\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\),
\(\partial _t u(\cdot , 0) = v_0\) in \(\Omega \)
|
Ex. + Eind.
|
\(d := 1 \implies u(x, t) := \frac {1}{2} (u_0(x+ct) + u_0(x-ct)) + \frac {1}{2c} \int _{x-ct}^{x+ct} v_0(s)\ds \) eind. kl. Lsg.
|
\(L^\infty \)-Stabilität
|
\(d := 1\), \(u_0 \in \C ^2(\Omega ) \cap L^\infty (\Omega )\), \(v_0 \in \C ^1(\Omega ) \cap L^1(\Omega )\) \(\implies \forall _{t \ge 0}\; \norm {u(\cdot , t)}_{L^\infty } \le \norm
{u_0}_{L^\infty } + \frac {1}{2c} \norm {v_0}_{L^1}\)
|
st. Abh. von \(u_0, v_0\)
|
\(d := 1\), \(u_0, \overline {u_0} \in \C ^2 \cap L^\infty \), \(v_0, \overline {v_0} \in \C ^1 \cap L^1\) \(\implies \forall _{t \ge 0}\; \norm {u(\cdot , t) - \overline {u}(\cdot , t)}_{L^\infty
} \le C \left (\norm {u_0 - \overline {u_0}}_{L^\infty } + \norm {v_0 - \overline {v_0}}_{L^1}\right )\)
|
Abh.kegel
|
\(d := 1\), \((x_0, t_0) \in \Omega _T\), \(\forall _{|x - x_0| \le ct_0}\; u_0(x) = v_0(x) = 0\) \(\implies \) \(u(x,t) = 0\) für \(t \in [0, t_0]\), \(|x - x_0| \le c(t_0 - t)\)
|
inhom. ARWP |
Definition
|
\(\Omega \subset \real ^d\), \(f\colon \Omega _T \to \real \), \(g\colon \partial \Omega \times (0, T) \to \real \), \(u_0, v_0\colon \Omega \to \real \)
\(\implies \) \(\partial _t^2 u - c^2 \Delta u = f\) in \(\Omega _T\), \(u(\cdot , 0) = u_0\) in \(\Omega \), \(\partial _t u(\cdot , 0) = v_0\) in \(\Omega \), \(u = g\) auf \(\partial \Omega \times (0,
T)\)
|
Eind.
|
\(\Omega \subset \real ^d\) Lipschitz \(\implies \) es gibt höchstens eine kl. Lsg.
|
|
|
|
|