\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\underset {#3}{\underline {#1}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\overset {#3}{\overline {#1}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LATEXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LATEXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\mathop \ordinarycolon }}\)
\(\newcommand \dblcolon {\vcentcolon \vcentcolon }\)
\(\newcommand \coloneqq {\vcentcolon =}\)
\(\newcommand \Coloneqq {\dblcolon =}\)
\(\newcommand \coloneq {\vcentcolon {-}}\)
\(\newcommand \Coloneq {\dblcolon {-}}\)
\(\newcommand \eqqcolon {=\vcentcolon }\)
\(\newcommand \Eqqcolon {=\dblcolon }\)
\(\newcommand \eqcolon {\mathrel {-}\vcentcolon }\)
\(\newcommand \Eqcolon {\mathrel {-}\dblcolon }\)
\(\newcommand \colonapprox {\vcentcolon \approx }\)
\(\newcommand \Colonapprox {\dblcolon \approx }\)
\(\newcommand \colonsim {\vcentcolon \sim }\)
\(\newcommand \Colonsim {\dblcolon \sim }\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\)
\(\newcommand{\alphaup}{\unicode{x03B1}}\)
\(\newcommand{\betaup}{\unicode{x03B2}}\)
\(\newcommand{\gammaup}{\unicode{x03B3}}\)
\(\newcommand{\digammaup}{\unicode{x03DD}}\)
\(\newcommand{\deltaup}{\unicode{x03B4}}\)
\(\newcommand{\epsilonup}{\unicode{x03F5}}\)
\(\newcommand{\varepsilonup}{\unicode{x03B5}}\)
\(\newcommand{\zetaup}{\unicode{x03B6}}\)
\(\newcommand{\etaup}{\unicode{x03B7}}\)
\(\newcommand{\thetaup}{\unicode{x03B8}}\)
\(\newcommand{\varthetaup}{\unicode{x03D1}}\)
\(\newcommand{\iotaup}{\unicode{x03B9}}\)
\(\newcommand{\kappaup}{\unicode{x03BA}}\)
\(\newcommand{\varkappaup}{\unicode{x03F0}}\)
\(\newcommand{\lambdaup}{\unicode{x03BB}}\)
\(\newcommand{\muup}{\unicode{x03BC}}\)
\(\newcommand{\nuup}{\unicode{x03BD}}\)
\(\newcommand{\xiup}{\unicode{x03BE}}\)
\(\newcommand{\omicronup}{\unicode{x03BF}}\)
\(\newcommand{\piup}{\unicode{x03C0}}\)
\(\newcommand{\varpiup}{\unicode{x03D6}}\)
\(\newcommand{\rhoup}{\unicode{x03C1}}\)
\(\newcommand{\varrhoup}{\unicode{x03F1}}\)
\(\newcommand{\sigmaup}{\unicode{x03C3}}\)
\(\newcommand{\varsigmaup}{\unicode{x03C2}}\)
\(\newcommand{\tauup}{\unicode{x03C4}}\)
\(\newcommand{\upsilonup}{\unicode{x03C5}}\)
\(\newcommand{\phiup}{\unicode{x03D5}}\)
\(\newcommand{\varphiup}{\unicode{x03C6}}\)
\(\newcommand{\chiup}{\unicode{x03C7}}\)
\(\newcommand{\psiup}{\unicode{x03C8}}\)
\(\newcommand{\omegaup}{\unicode{x03C9}}\)
\(\newcommand{\Alphaup}{\unicode{x0391}}\)
\(\newcommand{\Betaup}{\unicode{x0392}}\)
\(\newcommand{\Gammaup}{\unicode{x0393}}\)
\(\newcommand{\Digammaup}{\unicode{x03DC}}\)
\(\newcommand{\Deltaup}{\unicode{x0394}}\)
\(\newcommand{\Epsilonup}{\unicode{x0395}}\)
\(\newcommand{\Zetaup}{\unicode{x0396}}\)
\(\newcommand{\Etaup}{\unicode{x0397}}\)
\(\newcommand{\Thetaup}{\unicode{x0398}}\)
\(\newcommand{\Varthetaup}{\unicode{x03F4}}\)
\(\newcommand{\Iotaup}{\unicode{x0399}}\)
\(\newcommand{\Kappaup}{\unicode{x039A}}\)
\(\newcommand{\Lambdaup}{\unicode{x039B}}\)
\(\newcommand{\Muup}{\unicode{x039C}}\)
\(\newcommand{\Nuup}{\unicode{x039D}}\)
\(\newcommand{\Xiup}{\unicode{x039E}}\)
\(\newcommand{\Omicronup}{\unicode{x039F}}\)
\(\newcommand{\Piup}{\unicode{x03A0}}\)
\(\newcommand{\Varpiup}{\unicode{x03D6}}\)
\(\newcommand{\Rhoup}{\unicode{x03A1}}\)
\(\newcommand{\Sigmaup}{\unicode{x03A3}}\)
\(\newcommand{\Tauup}{\unicode{x03A4}}\)
\(\newcommand{\Upsilonup}{\unicode{x03A5}}\)
\(\newcommand{\Phiup}{\unicode{x03A6}}\)
\(\newcommand{\Chiup}{\unicode{x03A7}}\)
\(\newcommand{\Psiup}{\unicode{x03A8}}\)
\(\newcommand{\Omegaup}{\unicode{x03A9}}\)
\(\newcommand{\alphait}{\unicode{x1D6FC}}\)
\(\newcommand{\betait}{\unicode{x1D6FD}}\)
\(\newcommand{\gammait}{\unicode{x1D6FE}}\)
\(\newcommand{\digammait}{\mathit{\unicode{x03DD}}}\)
\(\newcommand{\deltait}{\unicode{x1D6FF}}\)
\(\newcommand{\epsilonit}{\unicode{x1D716}}\)
\(\newcommand{\varepsilonit}{\unicode{x1D700}}\)
\(\newcommand{\zetait}{\unicode{x1D701}}\)
\(\newcommand{\etait}{\unicode{x1D702}}\)
\(\newcommand{\thetait}{\unicode{x1D703}}\)
\(\newcommand{\varthetait}{\unicode{x1D717}}\)
\(\newcommand{\iotait}{\unicode{x1D704}}\)
\(\newcommand{\kappait}{\unicode{x1D705}}\)
\(\newcommand{\varkappait}{\unicode{x1D718}}\)
\(\newcommand{\lambdait}{\unicode{x1D706}}\)
\(\newcommand{\muit}{\unicode{x1D707}}\)
\(\newcommand{\nuit}{\unicode{x1D708}}\)
\(\newcommand{\xiit}{\unicode{x1D709}}\)
\(\newcommand{\omicronit}{\unicode{x1D70A}}\)
\(\newcommand{\piit}{\unicode{x1D70B}}\)
\(\newcommand{\varpiit}{\unicode{x1D71B}}\)
\(\newcommand{\rhoit}{\unicode{x1D70C}}\)
\(\newcommand{\varrhoit}{\unicode{x1D71A}}\)
\(\newcommand{\sigmait}{\unicode{x1D70E}}\)
\(\newcommand{\varsigmait}{\unicode{x1D70D}}\)
\(\newcommand{\tauit}{\unicode{x1D70F}}\)
\(\newcommand{\upsilonit}{\unicode{x1D710}}\)
\(\newcommand{\phiit}{\unicode{x1D719}}\)
\(\newcommand{\varphiit}{\unicode{x1D711}}\)
\(\newcommand{\chiit}{\unicode{x1D712}}\)
\(\newcommand{\psiit}{\unicode{x1D713}}\)
\(\newcommand{\omegait}{\unicode{x1D714}}\)
\(\newcommand{\Alphait}{\unicode{x1D6E2}}\)
\(\newcommand{\Betait}{\unicode{x1D6E3}}\)
\(\newcommand{\Gammait}{\unicode{x1D6E4}}\)
\(\newcommand{\Digammait}{\mathit{\unicode{x03DC}}}\)
\(\newcommand{\Deltait}{\unicode{x1D6E5}}\)
\(\newcommand{\Epsilonit}{\unicode{x1D6E6}}\)
\(\newcommand{\Zetait}{\unicode{x1D6E7}}\)
\(\newcommand{\Etait}{\unicode{x1D6E8}}\)
\(\newcommand{\Thetait}{\unicode{x1D6E9}}\)
\(\newcommand{\Varthetait}{\unicode{x1D6F3}}\)
\(\newcommand{\Iotait}{\unicode{x1D6EA}}\)
\(\newcommand{\Kappait}{\unicode{x1D6EB}}\)
\(\newcommand{\Lambdait}{\unicode{x1D6EC}}\)
\(\newcommand{\Muit}{\unicode{x1D6ED}}\)
\(\newcommand{\Nuit}{\unicode{x1D6EE}}\)
\(\newcommand{\Xiit}{\unicode{x1D6EF}}\)
\(\newcommand{\Omicronit}{\unicode{x1D6F0}}\)
\(\newcommand{\Piit}{\unicode{x1D6F1}}\)
\(\newcommand{\Rhoit}{\unicode{x1D6F2}}\)
\(\newcommand{\Sigmait}{\unicode{x1D6F4}}\)
\(\newcommand{\Tauit}{\unicode{x1D6F5}}\)
\(\newcommand{\Upsilonit}{\unicode{x1D6F6}}\)
\(\newcommand{\Phiit}{\unicode{x1D6F7}}\)
\(\newcommand{\Chiit}{\unicode{x1D6F8}}\)
\(\newcommand{\Psiit}{\unicode{x1D6F9}}\)
\(\newcommand{\Omegait}{\unicode{x1D6FA}}\)
\(\let \digammaup \Digammaup \)
\(\renewcommand {\digammait }{\mathit {\digammaup }}\)
\(\newcommand {\smallin }{\unicode {x220A}}\)
\(\newcommand {\smallowns }{\unicode {x220D}}\)
\(\newcommand {\notsmallin }{\LWRoverlaysymbols {/}{\unicode {x220A}}}\)
\(\newcommand {\notsmallowns }{\LWRoverlaysymbols {/}{\unicode {x220D}}}\)
\(\newcommand {\rightangle }{\unicode {x221F}}\)
\(\newcommand {\intclockwise }{\unicode {x2231}}\)
\(\newcommand {\ointclockwise }{\unicode {x2232}}\)
\(\newcommand {\ointctrclockwise }{\unicode {x2233}}\)
\(\newcommand {\oiint }{\unicode {x222F}}\)
\(\newcommand {\oiiint }{\unicode {x2230}}\)
\(\newcommand {\ddag }{\unicode {x2021}}\)
\(\newcommand {\P }{\unicode {x00B6}}\)
\(\newcommand {\copyright }{\unicode {x00A9}}\)
\(\newcommand {\dag }{\unicode {x2020}}\)
\(\newcommand {\pounds }{\unicode {x00A3}}\)
\(\newcommand {\iddots }{\unicode {x22F0}}\)
\(\newcommand {\utimes }{\overline {\times }}\)
\(\newcommand {\dtimes }{\underline {\times }}\)
\(\newcommand {\udtimes }{\overline {\underline {\times }}}\)
\(\newcommand {\leftwave }{\left \{}\)
\(\newcommand {\rightwave }{\right \}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\newcommand {\cmidrule }[2][]{}\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\ang }[2][]{(\mathrm {#2})\degree }\)
\(\newcommand {\num }[2][]{\mathrm {#2}}\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\newcommand {\LWRSI }[2][]{\mathrm {#1\LWRSInumber \,#2}}\)
\(\newcommand {\SI }[2][]{\def \LWRSInumber {#2}\LWRSI }\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\mathrm {#2\,\unicode {x2013}\,#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\mathrm {#2\,#4\,\unicode {x2013}\,#3\,#4}}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\require {mhchem}\)
\(\require {cancel}\)
\(\newcommand {\fint }{âĺŊ}\)
\(\newcommand {\hdots }{\cdots }\)
\(\newcommand {\mathnormal }[1]{#1}\)
\(\newcommand {\vecs }[2]{\vec {#1}_{#2}}\)
\(\newcommand {\E }{\ensuremath {\operatorname {E}}}\)
\(\newcommand {\eps }{\ensuremath {\operatorname {eps}}}\)
\(\renewcommand {\O }{\ensuremath {\operatorname {\mathcal {O}}}}\)
\(\newcommand {\cond }{\ensuremath {\operatorname {cond}}}\)
\(\newcommand {\sgn }{\ensuremath {\operatorname {sgn}}}\)
\(\newcommand {\rg }{\ensuremath {\operatorname {rg}}}\)
\(\newcommand {\im }{\ensuremath {\operatorname {im}}}\)
\(\renewcommand {\ker }{\ensuremath {\operatorname {ker}}}\)
\(\newcommand {\aufspann }[1]{\ensuremath {\left \langle #1\right \rangle }}\)
\(\newcommand {\diag }{\ensuremath {\operatorname {diag}}}\)
\(\newcommand {\fracsize }[1]{{\large #1}}\)
\(\newcommand {\matrixsize }[1]{{\scriptsize #1}}\)
\(\newcommand {\name }[1]{\textsc {#1}}\)
\(\newcommand {\smallpmatrix }[1]{\left (\begin {smallmatrix}#1\end {smallmatrix}\right )}\)
\(\newcommand {\matlab }{{\fontfamily {bch}\scshape \selectfont {}Matlab}}\)
\(\newcommand {\innerproduct }[1]{\left \langle {#1}\right \rangle }\)
\(\newcommand {\norm }[1]{\left \Vert {#1}\right \Vert }\)
\(\renewcommand {\natural }{\mathbb {N}}\)
\(\newcommand {\integer }{\mathbb {Z}}\)
\(\newcommand {\rational }{\mathbb {Q}}\)
\(\newcommand {\real }{\mathbb {R}}\)
\(\newcommand {\complex }{\mathbb {C}}\)
\(\renewcommand {\d }{\mathop {}\!\mathrm {d}}\)
\(\newcommand {\dr }{\d {}r}\)
\(\newcommand {\ds }{\d {}s}\)
\(\newcommand {\dt }{\d {}t}\)
\(\newcommand {\du }{\d {}u}\)
\(\newcommand {\dv }{\d {}v}\)
\(\newcommand {\dw }{\d {}w}\)
\(\newcommand {\dx }{\d {}x}\)
\(\newcommand {\dy }{\d {}y}\)
\(\newcommand {\dz }{\d {}z}\)
\(\newcommand {\dsigma }{\d {}\sigma }\)
\(\newcommand {\dphi }{\d {}\phi }\)
\(\newcommand {\dvarphi }{\d {}\varphi }\)
\(\newcommand {\dtau }{\d {}\tau }\)
\(\newcommand {\dxi }{\d {}\xi }\)
\(\newcommand {\dtheta }{\d {}\theta }\)
\(\newcommand {\tp }{\mathrm {T}}\)
Allgemeines, Gauß-Jordan-Algorithmus und Fehlerabschätzung
Ein LGS besteht aus \(m\) Gleichungen in \(n\) Unbestimmten. Es kann durch die Koeffizientenmatrix \(A\), den Unbekannten \(x_j\) und einer rechten Seite \(b\) dargestellt werden. Für \(b = 0\) heißt
das LGS homogen, sonst inhomogen. Ein LGS ohne Lösung heißt überbestimmt, ein LGS mit mehreren Lösungen heißt unterbestimmt.
Gauß-Jordan-Algorithmus:
\(\left (\begin {array}{cccccc|c} 1 & \cdots & 0 & w_{1, \ell } & \cdots & w_{1, n} & w_{1, n + 1} \\ \vdots & \ddots &
\vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & 1 & & & & \\ 0 & \cdots & 0 & w_{\ell , \ell }
& \cdots & w_{\ell , n} & w_{\ell , n + 1} \\ \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & \cdots & 0
& w_{n, \ell } & \cdots & w_{n, n} & w_{n, n + 1} \end {array}\right )\)
|
Durch Umformen wird die Matrix eines LGS \(Ax = b\) in die Einheitsmatrix überführt. Vor dem \(\ell \)-ten Eliminationsschritt sieht die Matrix wie links angegeben aus, dieser verläuft wie folgt:
|
Bestimmung des Maximums \(|w_{i,\ell }|\) der Beträge von \(w_{\ell ,\ell }, \ldots , w_{n,\ell }\) und Vertauschen der Zeilen \(\ell \) und \(i\),
Division der Zeile \(\ell \) durch \(w_{\ell ,\ell }\) und
Subtraktion des \(w_{j, \ell }\)-fachen der Zeile \(\ell \) von allen Zeilen \(j\) mit \(j \not = l\), d. h.
\(w_{j,k} \leftarrow w_{j,k} - w_{j,\ell } \cdot w_{\ell ,k}\) für \(k = \ell , \ldots , n + 1\).
Vektor- und Matrixnormen: Für zwei Matrizen oder Vektoren gilt stets \(\norm {A \cdot B} \le \norm {A} \cdot \norm {B}\).
\(\seteqnumber{0}{}{0}\)
\begin{align*}
\norm {x}_2 = \sqrt {\sum _k |x_k|^2}, \quad \norm {x}_\infty = \max _k |x_k|, \qquad \qquad \norm {A}_\infty = \max _j \sum _k |a_{jk}|, \quad \norm {A}_F
= \sqrt {\sum _{i,j} |a_{jk}|^2}
\end{align*}
\(\seteqnumber{0}{}{0}\)
\begin{align*}
\norm {A}_2 = \max _{\norm {x}_2 = 1} \norm {Ax}_2 = \max \{\sqrt {\lambda } \;|\; \lambda \text { EW von } A^\ast A\}
\end{align*}
Fehler bei LGS: Ist \(\widetilde {x}\) die numerische berechnete Lösung eines regulären linearen LGS \(Ax = b\) sowie \(A\widetilde {x} = \widetilde {b}\), dann gilt
für den Fehler \(\Delta x = \widetilde {x} - x\), dass
\(\seteqnumber{0}{}{0}\)
\begin{align*}
\cond (A)^{-1} \cdot \frac {\Vert \Delta b \Vert }{\Vert b \Vert } \le \frac {\Vert \Delta x \Vert }{\Vert x \Vert } \le \cond (A) \cdot \frac {\Vert
\Delta b \Vert }{\Vert b \Vert },
\end{align*}
wobei \(\cond (A) = \Vert A \Vert \cdot \Vert A^{-1} \Vert \) die Kondition der Matrix \(A\) ist. Beide Ungleichungen sind bestmöglich, d. h. Gleichheit kann durch konkrete
Beispiele erreicht werden.
Rückwärtseinsetzen: Bei einem LGS \(R = (r_{i,j})_{ij}\) in oberer Dreiecksform mit \(r_{1,1}, \dotsc , r_{n,n} \not = 0\) können die Unbekannten \(x_n,
\dotsc , x_1\) nacheinander bestimmt werden durch
\(\seteqnumber{0}{}{0}\)
\begin{align*}
x_n = b_n / r_{n,n} \quad \text { sowie }\quad x_\ell = (b_\ell - r_{\ell ,\ell +1} x_{\ell +1} - \dotsb - r_{\ell ,n} x_n) / r_{\ell ,\ell },
\end{align*}
wobei die schon berechneten Werte \(x_{\ell +1}, \dotsc , x_n\) verwendet werden (\(\ell = n - 1, \dotsc , 1\)).
Cramersche Regel: Sei \(A\) eine \(n \times n\)-Matrix und \(b\) ein \(n\)-zeiliger Spaltenvektor. Dann lässt sich die Lösung des LGS \(Ax = b\)
berechnen durch
\(\seteqnumber{0}{}{0}\)
\begin{align*}
x_i = \frac {\det A_i}{\det A}, \qquad x = \begin{pmatrix}x_1 \\ \vdots \\ x_n\end {pmatrix}, \qquad i = 1, \dotsc , n,
\end{align*}
wobei \(A_i\) die Matrix ist, die aus \(A\) entsteht, wenn man die \(i\)-te Spalte durch \(b\) ersetzt.
Spiegelung eines Vektors an einer Hyperebene: Sei \(d\) ein zu einer Hyperebene orthogonaler Vektor, dann ist \(Q = E - \frac {2}{\norm {d}_2^2} d d^t\) die Transformationsmatrix der Spiegelung
eines Vektors \(x\) an der Hyperebene, da \(Qx = x - \frac {2}{\norm {d}_2^2} d d^t x = x - 2 \frac {d}{\norm {d}_2} \cdot \innerproduct {\frac {d}{\norm {d}_2}, x}\),
wobei \(\innerproduct {\frac {d}{\norm {d}_2}, x}\) der Abstand von \(x\) zur Hyperebene ist.
Householder-Transformation: Die Transformation
\(\seteqnumber{0}{}{0}\)
\begin{align*}
x \mapsto Qx = x - \frac {1}{r} \left (d^t x\right ) \cdot d, \qquad d = \begin{pmatrix}c_1 + \sigma \norm {c}_2 \\ c_2 \\ \vdots \\ c_n\end {pmatrix},
\quad \sigma = \begin{cases}\sgn (c_1) & c_1 \not = 0 \\ 1 & c_1 = 0\end {cases}, \quad r = |d_1| \norm {c}_2
\end{align*}
ist eine Spiegelung, die den Vektor \(c\) auf \(-\sigma \norm {c}_2 \cdot e_1\) (also auf ein Vielfaches des ersten Einheitsvektors) abbildet. Sie wird Householder-Transformation genannt.
Normalerweise wird die Householder-Transformation durch
\(\seteqnumber{0}{}{0}\)
\begin{align*}
A \mapsto A - d \cdot \frac {1}{r} \left (d^t A\right )
\end{align*}
gleichzeitig auf alle Spalten einer Matrix \(A\) angewandt, wobei \(c = A(:, 1)\) die erste Spalte von \(A\) ist. Dadurch werden die Einträge \(a_{2,1}, a_{3,1}, \dotsc \) zu \(0\).
Die Matrix \(Q\) einer Householder-Transformation ist symmetrisch (\(Q^t = Q\)),
orthogonal (\(Q^{-1} = Q^t\)) und involutorisch (\(Q^2 = E\)).
Permutation bei LGS: Bei einem LGS \(Ax = b\) ändert eine Permutation \((1, 2, \dotsc ) \rightarrow I\)
(\(I\) Indexvektor) der Zeilen der Matrix die rechte Seite (\(A(I,:) x = b(I)\)) und eine Permutation der Spalten die Lösung (\(A(:,I) x(I) = b\)).
QR-Faktorisierung: Eine \(m \times n\)-Matrix \(A\) kann, ggf. nach einer Permutation der Spalten, als Produkt einer orthogonalen Matrix \(Q\) und einer oberen Dreiecksmatrix \(R\) geschrieben werden:
\(\seteqnumber{0}{}{0}\)
\begin{align*}
A(:,I) = QR \quad \text { mit }\quad R = \begin{pmatrix}\widetilde {R} & S \\ 0 & 0\end {pmatrix},
\end{align*}
wobei \(I\) ein Indexvektor und \(\widetilde {R}\) eine quadratische invertierbare obere Dreiecksmatrix mit Zeilen-/Spaltenzahl \(\rg A\) ist.
Die QR-Zerlegung lässt sich mit maximal \(\min \{m - 1, n\}\) Householder-Transformationen \(Q_k\) konstruieren: \(Q = (\dotsc Q_2 Q_1)^{-1} = Q_1 Q_2 \dotsc \) (\(Q_i\) sind orthogonal
und symmetrisch).
Ablauf der QR-Faktorisierung:
\(\left (\begin {array}{ccc|ccc} \ast & \cdots & \ast & \ast & \cdots & \ast \\ & \ddots & \vdots & \vdots & &
\vdots \\ 0 & & \ast & \ast & \cdots & \ast \\ \hline & & & & & \\ & 0 & & & B & \\ & &
& & & \\ \end {array}\right )\)
|
Ist die Matrix \(Q_{\ell - 1} \dotsm Q_1 A(:,I)\) vor dem \(\ell \)-ten Transformationsschritt von der Form wie links angegeben, so verläuft der nächste Schritt wie folgt:
|
Ist \(B = 0\), so ist die Transformation abgeschlossen. Für \(B \not = 0\) tauscht man die erste Spalte mit der Spalte, die die maximale \(2\)-Norm hat (\(c = B(:,1)\)). Die Permutation muss
durch entsprechenden Tausch in I gespeichert werden.
Falls \(B\) mehr als eine Zeile hat, wendet man nun die Householder-Transformation auf \(B\) an, sodass unterhalb von Position \((\ell , \ell )\) Nullen sind.
Lösen eines LGS durch QR-Faktorisierung: Ein LGS \(Ax = b\) mit einer \(m \times n\)-Matrix \(A\) kann mithilfe der QR-Zerlegung \(A(:,I) = QR\) gelöst werden. Nach Anwendung der
Householder-Transformationen auf \(A(:,I)\) (d. h. Multiplikation mit \(Q^{-1} = Q^t\)) hat das System \(A(:,I) x(I) = b\) die Form
\(\seteqnumber{0}{}{0}\)
\begin{align*}
A(:,I) x(I) = b \;\Leftrightarrow \; Ry = Q^t b \;\Leftrightarrow \; \begin{pmatrix}\widetilde {R} & S \\ 0 & 0\end {pmatrix} \begin{pmatrix}u \\
v\end {pmatrix} = \begin{pmatrix}c \\ d\end {pmatrix}, \qquad R = \begin{pmatrix}\widetilde {R} & S \\ 0 & 0\end {pmatrix},
\end{align*}
wobei \(\widetilde {R}\) eine quadratische, invertierbare, obere Dreiecksmatrix (Zeilen-/Spaltenzahl \(= \rg A\)), \(y = x(I)\), \(u = y(1:k)\), \(v = y(k+1:n)\) und \(Q^t b = \begin {pmatrix}c
\\ d\end {pmatrix}\) ist.
Lösungen: Eine Lösung existiert genau dann, wenn \(d = 0\) ist. In diesem Fall kann sie durch Rückwärtseinsetzen bzw. Lösung des Systems \(\widetilde {R}u
+ Sv = c\) berechnet werden. Für \(k = n\) ist die Lösung ist eindeutig, für \(k < n\) sind die Komponenten \(y(k+1:n)\) frei wählbar.
Für \(d \not = 0\) ist das LGS nicht lösbar.
Fehlerminimierung: Da orthogonale Transformationen (also auch Householder-Transformationen) die \(2\)-Norm invariant lassen, kann man durch die ermittelte Faktorisierung und den Fehler \(e = \norm {Ax -
b}_2 = \norm {Q^tAx - Q^tb}_2\) minimieren. Der Vektor \(x\), der den Fehler \(e\) minimiert, ergibt sich durch obige Lösung \(\widetilde {R}u + Sv = c\). Der minimale Fehler ist dann
\(e_{min} = \norm {d}_2\).
reguläres System: Ist \(Ax = b\) mit einer invertierbaren \(n \times n\)-Matrix \(A\), dann ist die Zeilen-/Spaltenzahl von \(\widetilde {R}\) gleich \(\rg A = n\). Die QR-Zerlegung
\(A(:,I) = QR\) ergibt in diesem Fall \(R = \widetilde {R}\) als invertierbare obere Dreiecksmatrix (\(n \times n\)).
Padé-Approximation
Padé-Approximation: Die Padé-Approximation einer Funktion \(f(x) = f_0 + f_1 x + f_2 x^2 + \dotsb \) ist eine rationale Funktion
\(\seteqnumber{0}{}{0}\)
\begin{align*}
\frac {p(x)}{q(x)} \approx f(x), \qquad p(x) = p_0 + p_1 x + \dotsb + p_m x^m, \quad q(x) = q_0 + q_1 x + \dotsb + q_m x^m
\end{align*}
mit Zählergrad \(m\) und Nennergrad \(n\), die mit \(f\) für \(z \to 0\) in den Termen der Ordnung bis einschließlich \(m + n\) übereinstimmt, d. h. \(\frac {p(x)}{q(x)} -
f(x) = \O (x^{m+n+1})\).
Beispiel für \(m = n = 2\): Zur Bestimmung der Koeffizienten von \(p\) und \(q\) kann man \(f\) z. B. in eine Taylor-Reihe \(f(x) = f_0 + f_1 x + f_2 x^2 + \dotsb \) im Punkt
\(0\) entwickeln, damit \(f\) eine Potenzreihe ist. Durch Ausmultiplizieren von \(f(x) q(x) \approx p(x)\) bzw.
\((f_0 + f_1 x + f_2 x^2 + \dotsb ) (1 + q_1 x + q_2 x^2) = (p_0 + p_1 x + p_2 x^2)\) (\(q_0\) kann durch Kürzen immer auf \(1\) gesetzt werden) und Sammeln der Terme
gleicher Ordnung auf der linken Seite entsteht ein LGS mit den \(m + n + 1\) Unbestimmten \(p_0, p_1, p_2, q_1, q_2\) in \(m + n + 1\) Gleichungen, wobei \(f_0, f_1, f_2, f_3, f_4\) auf der rechten
Seite steht.