\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\underset {#3}{\underline {#1}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\overset {#3}{\overline {#1}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LATEXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LATEXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\mathop \ordinarycolon }}\)
\(\newcommand \dblcolon {\vcentcolon \vcentcolon }\)
\(\newcommand \coloneqq {\vcentcolon =}\)
\(\newcommand \Coloneqq {\dblcolon =}\)
\(\newcommand \coloneq {\vcentcolon {-}}\)
\(\newcommand \Coloneq {\dblcolon {-}}\)
\(\newcommand \eqqcolon {=\vcentcolon }\)
\(\newcommand \Eqqcolon {=\dblcolon }\)
\(\newcommand \eqcolon {\mathrel {-}\vcentcolon }\)
\(\newcommand \Eqcolon {\mathrel {-}\dblcolon }\)
\(\newcommand \colonapprox {\vcentcolon \approx }\)
\(\newcommand \Colonapprox {\dblcolon \approx }\)
\(\newcommand \colonsim {\vcentcolon \sim }\)
\(\newcommand \Colonsim {\dblcolon \sim }\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\)
\(\newcommand{\alphaup}{\unicode{x03B1}}\)
\(\newcommand{\betaup}{\unicode{x03B2}}\)
\(\newcommand{\gammaup}{\unicode{x03B3}}\)
\(\newcommand{\digammaup}{\unicode{x03DD}}\)
\(\newcommand{\deltaup}{\unicode{x03B4}}\)
\(\newcommand{\epsilonup}{\unicode{x03F5}}\)
\(\newcommand{\varepsilonup}{\unicode{x03B5}}\)
\(\newcommand{\zetaup}{\unicode{x03B6}}\)
\(\newcommand{\etaup}{\unicode{x03B7}}\)
\(\newcommand{\thetaup}{\unicode{x03B8}}\)
\(\newcommand{\varthetaup}{\unicode{x03D1}}\)
\(\newcommand{\iotaup}{\unicode{x03B9}}\)
\(\newcommand{\kappaup}{\unicode{x03BA}}\)
\(\newcommand{\varkappaup}{\unicode{x03F0}}\)
\(\newcommand{\lambdaup}{\unicode{x03BB}}\)
\(\newcommand{\muup}{\unicode{x03BC}}\)
\(\newcommand{\nuup}{\unicode{x03BD}}\)
\(\newcommand{\xiup}{\unicode{x03BE}}\)
\(\newcommand{\omicronup}{\unicode{x03BF}}\)
\(\newcommand{\piup}{\unicode{x03C0}}\)
\(\newcommand{\varpiup}{\unicode{x03D6}}\)
\(\newcommand{\rhoup}{\unicode{x03C1}}\)
\(\newcommand{\varrhoup}{\unicode{x03F1}}\)
\(\newcommand{\sigmaup}{\unicode{x03C3}}\)
\(\newcommand{\varsigmaup}{\unicode{x03C2}}\)
\(\newcommand{\tauup}{\unicode{x03C4}}\)
\(\newcommand{\upsilonup}{\unicode{x03C5}}\)
\(\newcommand{\phiup}{\unicode{x03D5}}\)
\(\newcommand{\varphiup}{\unicode{x03C6}}\)
\(\newcommand{\chiup}{\unicode{x03C7}}\)
\(\newcommand{\psiup}{\unicode{x03C8}}\)
\(\newcommand{\omegaup}{\unicode{x03C9}}\)
\(\newcommand{\Alphaup}{\unicode{x0391}}\)
\(\newcommand{\Betaup}{\unicode{x0392}}\)
\(\newcommand{\Gammaup}{\unicode{x0393}}\)
\(\newcommand{\Digammaup}{\unicode{x03DC}}\)
\(\newcommand{\Deltaup}{\unicode{x0394}}\)
\(\newcommand{\Epsilonup}{\unicode{x0395}}\)
\(\newcommand{\Zetaup}{\unicode{x0396}}\)
\(\newcommand{\Etaup}{\unicode{x0397}}\)
\(\newcommand{\Thetaup}{\unicode{x0398}}\)
\(\newcommand{\Varthetaup}{\unicode{x03F4}}\)
\(\newcommand{\Iotaup}{\unicode{x0399}}\)
\(\newcommand{\Kappaup}{\unicode{x039A}}\)
\(\newcommand{\Lambdaup}{\unicode{x039B}}\)
\(\newcommand{\Muup}{\unicode{x039C}}\)
\(\newcommand{\Nuup}{\unicode{x039D}}\)
\(\newcommand{\Xiup}{\unicode{x039E}}\)
\(\newcommand{\Omicronup}{\unicode{x039F}}\)
\(\newcommand{\Piup}{\unicode{x03A0}}\)
\(\newcommand{\Varpiup}{\unicode{x03D6}}\)
\(\newcommand{\Rhoup}{\unicode{x03A1}}\)
\(\newcommand{\Sigmaup}{\unicode{x03A3}}\)
\(\newcommand{\Tauup}{\unicode{x03A4}}\)
\(\newcommand{\Upsilonup}{\unicode{x03A5}}\)
\(\newcommand{\Phiup}{\unicode{x03A6}}\)
\(\newcommand{\Chiup}{\unicode{x03A7}}\)
\(\newcommand{\Psiup}{\unicode{x03A8}}\)
\(\newcommand{\Omegaup}{\unicode{x03A9}}\)
\(\newcommand{\alphait}{\unicode{x1D6FC}}\)
\(\newcommand{\betait}{\unicode{x1D6FD}}\)
\(\newcommand{\gammait}{\unicode{x1D6FE}}\)
\(\newcommand{\digammait}{\mathit{\unicode{x03DD}}}\)
\(\newcommand{\deltait}{\unicode{x1D6FF}}\)
\(\newcommand{\epsilonit}{\unicode{x1D716}}\)
\(\newcommand{\varepsilonit}{\unicode{x1D700}}\)
\(\newcommand{\zetait}{\unicode{x1D701}}\)
\(\newcommand{\etait}{\unicode{x1D702}}\)
\(\newcommand{\thetait}{\unicode{x1D703}}\)
\(\newcommand{\varthetait}{\unicode{x1D717}}\)
\(\newcommand{\iotait}{\unicode{x1D704}}\)
\(\newcommand{\kappait}{\unicode{x1D705}}\)
\(\newcommand{\varkappait}{\unicode{x1D718}}\)
\(\newcommand{\lambdait}{\unicode{x1D706}}\)
\(\newcommand{\muit}{\unicode{x1D707}}\)
\(\newcommand{\nuit}{\unicode{x1D708}}\)
\(\newcommand{\xiit}{\unicode{x1D709}}\)
\(\newcommand{\omicronit}{\unicode{x1D70A}}\)
\(\newcommand{\piit}{\unicode{x1D70B}}\)
\(\newcommand{\varpiit}{\unicode{x1D71B}}\)
\(\newcommand{\rhoit}{\unicode{x1D70C}}\)
\(\newcommand{\varrhoit}{\unicode{x1D71A}}\)
\(\newcommand{\sigmait}{\unicode{x1D70E}}\)
\(\newcommand{\varsigmait}{\unicode{x1D70D}}\)
\(\newcommand{\tauit}{\unicode{x1D70F}}\)
\(\newcommand{\upsilonit}{\unicode{x1D710}}\)
\(\newcommand{\phiit}{\unicode{x1D719}}\)
\(\newcommand{\varphiit}{\unicode{x1D711}}\)
\(\newcommand{\chiit}{\unicode{x1D712}}\)
\(\newcommand{\psiit}{\unicode{x1D713}}\)
\(\newcommand{\omegait}{\unicode{x1D714}}\)
\(\newcommand{\Alphait}{\unicode{x1D6E2}}\)
\(\newcommand{\Betait}{\unicode{x1D6E3}}\)
\(\newcommand{\Gammait}{\unicode{x1D6E4}}\)
\(\newcommand{\Digammait}{\mathit{\unicode{x03DC}}}\)
\(\newcommand{\Deltait}{\unicode{x1D6E5}}\)
\(\newcommand{\Epsilonit}{\unicode{x1D6E6}}\)
\(\newcommand{\Zetait}{\unicode{x1D6E7}}\)
\(\newcommand{\Etait}{\unicode{x1D6E8}}\)
\(\newcommand{\Thetait}{\unicode{x1D6E9}}\)
\(\newcommand{\Varthetait}{\unicode{x1D6F3}}\)
\(\newcommand{\Iotait}{\unicode{x1D6EA}}\)
\(\newcommand{\Kappait}{\unicode{x1D6EB}}\)
\(\newcommand{\Lambdait}{\unicode{x1D6EC}}\)
\(\newcommand{\Muit}{\unicode{x1D6ED}}\)
\(\newcommand{\Nuit}{\unicode{x1D6EE}}\)
\(\newcommand{\Xiit}{\unicode{x1D6EF}}\)
\(\newcommand{\Omicronit}{\unicode{x1D6F0}}\)
\(\newcommand{\Piit}{\unicode{x1D6F1}}\)
\(\newcommand{\Rhoit}{\unicode{x1D6F2}}\)
\(\newcommand{\Sigmait}{\unicode{x1D6F4}}\)
\(\newcommand{\Tauit}{\unicode{x1D6F5}}\)
\(\newcommand{\Upsilonit}{\unicode{x1D6F6}}\)
\(\newcommand{\Phiit}{\unicode{x1D6F7}}\)
\(\newcommand{\Chiit}{\unicode{x1D6F8}}\)
\(\newcommand{\Psiit}{\unicode{x1D6F9}}\)
\(\newcommand{\Omegait}{\unicode{x1D6FA}}\)
\(\let \digammaup \Digammaup \)
\(\renewcommand {\digammait }{\mathit {\digammaup }}\)
\(\newcommand {\smallin }{\unicode {x220A}}\)
\(\newcommand {\smallowns }{\unicode {x220D}}\)
\(\newcommand {\notsmallin }{\LWRoverlaysymbols {/}{\unicode {x220A}}}\)
\(\newcommand {\notsmallowns }{\LWRoverlaysymbols {/}{\unicode {x220D}}}\)
\(\newcommand {\rightangle }{\unicode {x221F}}\)
\(\newcommand {\intclockwise }{\unicode {x2231}}\)
\(\newcommand {\ointclockwise }{\unicode {x2232}}\)
\(\newcommand {\ointctrclockwise }{\unicode {x2233}}\)
\(\newcommand {\oiint }{\unicode {x222F}}\)
\(\newcommand {\oiiint }{\unicode {x2230}}\)
\(\newcommand {\ddag }{\unicode {x2021}}\)
\(\newcommand {\P }{\unicode {x00B6}}\)
\(\newcommand {\copyright }{\unicode {x00A9}}\)
\(\newcommand {\dag }{\unicode {x2020}}\)
\(\newcommand {\pounds }{\unicode {x00A3}}\)
\(\newcommand {\iddots }{\unicode {x22F0}}\)
\(\newcommand {\utimes }{\overline {\times }}\)
\(\newcommand {\dtimes }{\underline {\times }}\)
\(\newcommand {\udtimes }{\overline {\underline {\times }}}\)
\(\newcommand {\leftwave }{\left \{}\)
\(\newcommand {\rightwave }{\right \}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\newcommand {\cmidrule }[2][]{}\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\ang }[2][]{(\mathrm {#2})\degree }\)
\(\newcommand {\num }[2][]{\mathrm {#2}}\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\newcommand {\LWRSI }[2][]{\mathrm {#1\LWRSInumber \,#2}}\)
\(\newcommand {\SI }[2][]{\def \LWRSInumber {#2}\LWRSI }\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\mathrm {#2\,\unicode {x2013}\,#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\mathrm {#2\,#4\,\unicode {x2013}\,#3\,#4}}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\require {mhchem}\)
\(\require {cancel}\)
\(\newcommand {\fint }{âĺŊ}\)
\(\newcommand {\hdots }{\cdots }\)
\(\newcommand {\mathnormal }[1]{#1}\)
\(\newcommand {\vecs }[2]{\vec {#1}_{#2}}\)
\(\renewcommand {\AA }{\mathbb {A}}\)
\(\newcommand {\EE }{\mathbb {E}}\)
\(\newcommand {\PP }{\mathbb {P}}\)
\(\newcommand {\UU }{\mathbb {U}}\)
\(\newcommand {\XX }{\mathbb {X}}\)
\(\renewcommand {\C }{\mathcal {C}}\)
\(\renewcommand {\F }{\mathcal {F}}\)
\(\renewcommand {\H }{\mathcal {H}}\)
\(\renewcommand {\O }{\mathcal {O}}\)
\(\renewcommand {\S }{\mathcal {S}}\)
\(\newcommand {\GL }{\mathrm {GL}}\)
\(\newcommand {\eps }{\mathrm {eps}}\)
\(\renewcommand {\div }{\mathrm {div}}\)
\(\newcommand {\rot }{\mathrm {rot}}\)
\(\newcommand {\D }{\mathop {}\!\mathrm {D}}\)
\(\newcommand {\iu }{\text {i}}\)
\(\newcommand {\tr }{\text {tr}}\)
\(\newcommand {\Vor }{\mathrm {Vor}}\)
\(\newcommand {\Del }{\mathrm {Del}}\)
\(\newcommand {\Rang }{\text {Rang}}\)
\(\newcommand {\id }{\text {id}}\)
\(\newcommand {\sinc }{\operatorname {sinc}}\)
\(\newcommand {\code }[1]{\texttt {#1}}\)
\(\newcommand {\name }[1]{\textsc {#1}}\)
\(\newcommand {\smallpmatrix }[1]{\left (\begin {smallmatrix}#1\end {smallmatrix}\right )}\)
\(\newcommand {\matlab }{{\fontfamily {bch}\scshape \selectfont {}Matlab}}\)
\(\newcommand {\innerproduct }[1]{\left \langle {#1}\right \rangle }\)
\(\newcommand {\norm }[1]{\left \Vert {#1}\right \Vert }\)
\(\renewcommand {\natural }{\mathbb {N}}\)
\(\newcommand {\integer }{\mathbb {Z}}\)
\(\newcommand {\rational }{\mathbb {Q}}\)
\(\newcommand {\real }{\mathbb {R}}\)
\(\newcommand {\complex }{\mathbb {C}}\)
\(\renewcommand {\d }{\mathop {}\!\mathrm {d}}\)
\(\newcommand {\dr }{\d {}r}\)
\(\newcommand {\ds }{\d {}s}\)
\(\newcommand {\dt }{\d {}t}\)
\(\newcommand {\du }{\d {}u}\)
\(\newcommand {\dv }{\d {}v}\)
\(\newcommand {\dw }{\d {}w}\)
\(\newcommand {\dx }{\d {}x}\)
\(\newcommand {\dy }{\d {}y}\)
\(\newcommand {\dz }{\d {}z}\)
\(\newcommand {\dsigma }{\d {}\sigma }\)
\(\newcommand {\dphi }{\d {}\phi }\)
\(\newcommand {\dvarphi }{\d {}\varphi }\)
\(\newcommand {\dtau }{\d {}\tau }\)
\(\newcommand {\dxi }{\d {}\xi }\)
\(\newcommand {\dtheta }{\d {}\theta }\)
\(\newcommand {\tp }{\mathrm {T}}\)
Affine Räume
affine Geometrie: Die dreidimensionale Alltagswelt ist koordinatenunabhängig. Objekte existieren ohne Koordinaten und es gibt kein vorgezogenes Koordinatensystem/keinen Ursprung. Um Punktmengen (Punkte
haben nur Positionen) und Vektorräume (Vektoren haben nur Betrag und Richtung) zusammenzubringen, benutzt man affine Geometrie.
affiner Raum: Ein affiner Raum \((\AA , \vec {V}, \oplus )\) ist ein Tripel bestehend aus
einer nicht-leeren Menge \(\AA \) (Punktmenge),
einem Vektorraum \((\vec {V}, +, \cdot )\) (zugrundeliegender Vektorraum) und
einer Operation \(\oplus \colon \AA \times \vec {V} \to \AA \), \((a, \vec {v}) \mapsto a \oplus \vec {v}\),
sodass folgende Bedingungen gelten:
\(\forall _{a \in \AA }\; a \oplus \vec {0} = a\) (neutrales Element),
\(\forall _{p, q \in \AA } \exists !_{\vec {v} =: \vec {pq} \in \vec {V}}\; p \oplus \vec {v} = q\) (eindeutige Verbindungsvektoren) und
\(\forall _{a \in \AA } \forall _{\vec {u}, \vec {v} \in \vec {V}}\; (a \oplus \vec {u}) \oplus \vec {v} = a \oplus (\vec {u} + \vec {v})\) (Assoziativität).
Dimension: Die Dimension von \((\AA , \vec {V}, \oplus )\) ist \(\dim \AA := \dim \vec {V}\).
Beispiel: \((H, \vec {\real }^2, \oplus )\) mit der Ebene \(H := \{(x, y, z) \in \real ^3 \;|\; x + y + z = 1\}\) durch \((1, 0, 0)\), \((0, 1, 0)\) und \((0, 0, 1)\) ist ein affiner Raum mit Operation
\(\oplus \colon H \times \vec {\real }^2 \to H\),
\((x, y, 1 - x - y) \oplus \smallpmatrix {u\\v} := (x + u, y + v, 1 - (x + u) - (y + v))\).
Lemma (Chasles-Identität): Für \(a, b, c \in \AA \) gilt \(\vec {ac} = \vec {ab} + \vec {bc}\).
Beweis: Mit \(b = a \oplus \vec {ab}\) gilt \(c = b \oplus \vec {bc} = (a \oplus \vec {ab}) \oplus \vec {bc} = a \oplus (\vec {ab} + \vec {bc})\). Mit (2) von oben folgt \(\vec {ac} =
\vec {ab} + \vec {bc}\).
Wegen \(\vec {aa} = \vec {0}\) (folgt aus \(a = a \oplus \vec {0})\) gilt insbesondere \(\vec {ba} = -\vec {ab}\).
Vektorraum als affiner Raum: Jeder Vektorraum \(\vec {V}\) ist ein affiner Raum mit sich selbst als zugrundeliegender Vektorraum und der Vektoraddition als Verknüpfung, d. h. \(\AA := \vec {V}\)
und \(\oplus := +\) (\(\AA \) wird als Menge ohne Operationen oder ausgezeichneten Punkt angesehen).
Beispiel: \((\real ^n, \vec {\real }^n, \oplus )\) ist ein affiner Raum mit \((x_1, \dotsc , x_n) \oplus \smallpmatrix {v_1\\\vdots \\v_n} := (x_1 + v_1, \dotsc , x_n + v_n)\) (Punkte als
Zeilenvektor, Vektoren als Spaltenvektor) und heißt affiner Standardraum.
affiner Unterraum: Sei \((\AA , \vec {V}, \oplus )\) ein affiner Raum. Eine Teilmenge \(\UU \subset \AA \) heißt affiner Unterraum, falls es einen Unterraum \(\vec
{W} \le \vec {V}\) und ein \(a_0 \in \AA \) gibt mit \(\UU = \{a_0 \oplus \vec {w} \;|\; \vec {w} \in \vec {W}\}\).
In diesem Fall ist \((\UU , \vec {W}, \oplus |_{\UU \times \vec {W}})\) wieder ein affiner Raum der Dimension \(\dim \vec {W}\).
Ein affiner Unterraum der Kodimension \(1\) heißt auch Hyperebene.
Beispiel: Für alle \(a \in \AA \) ist \(\{a\}\) ein affiner Unterraum von \(\AA \) der Dimension \(0\) (mit \(\vec {W} := \{\vec {0}\}\)).
\(\AA \) ist ein affiner Unterraum von \(\AA \) der Kodimension \(0\).
Affine Abbildungen
affine Abbildung: Seien \((\AA _1, \vecs {V}{1}, \oplus )\) und \((\AA _2, \vecs {V}{2}, \boxplus )\) zwei affine Räume.
Eine Abbildung \(F\colon \AA _1 \to \AA _2\) heißt affine Abbildung, falls es eine lineare Abbildung \(f\colon \vecs {V}{1} \to \vecs {V}{2}\) gibt mit \(\forall _{a, b
\in \AA _1}\; f(\vec {ab}) = \vec {F(a)F(b)}\).
Affinität: Eine bijektive affine Abbildung heißt Affinität/affiner Isomorphismus.
Lemma: \(F\) ist eine affine Abbildung genau dann, wenn es eine lineare Abbildung \(f\colon \vecs {V}{1} \to \vecs {V}{2}\) gibt mit \(\forall _{a \in \AA _1} \forall _{\vec {v} \in \vecs {V}{1}}\;
F(a \oplus \vec {v}) = F(a) \boxplus f(\vec {v})\).
Beweis: „\(\implies \)“: Seien \(a \in \AA _1\) und \(\vec {v} \in \vecs {V}{1}\) beliebig. Definiere \(b := a \oplus \vec {v}\). Dann gilt \(\vec {v} = \vec {ab}\) und daher \(f(\vec {v}) = f(\vec
{ab}) = \vec {F(a)F(b)} = \vec {F(a) F(a \oplus \vec {v})}\), also \(F(a \oplus \vec {v}) = F(a) \boxplus f(\vec {v})\).
„\(\impliedby \)“: Seien \(a, b \in \AA _1\) beliebig. Definiere \(\vec {v} := \vec {ab}\). Dann gilt \(b = a \oplus \vec {v}\) und daher
\(F(b) = F(a \oplus \vec {v}) = F(a) \boxplus f(\vec {ab})\), also \(f(\vec {ab}) = \vec {F(a)F(b)}\).
Beispiel: Seien \((\AA , \vec {V}, \oplus )\) ein affiner Raum und \(\vecs {v}{0} \in \vec {V}\) fest.
Dann ist \(F\colon \AA \to \AA \), \(F(a) := a \oplus \vecs {v}{0}\) eine affine Abbildung (Parallelverschiebung).
Affinkombinationen
Lemma:
Seien \((\AA , \vec {V}, \oplus )\) ein affiner Raum, \(a_1, \dotsc , a_n \in \AA \) und \(\lambda _1, \dotsc , \lambda _n \in \real \) mit \(\sum _{i=1}^n \lambda _i = 1\).
Dann gilt für alle \(a, b \in \AA \), dass \(a \oplus \sum _{i=1}^n \lambda _i \vec {aa_i} = b \oplus \sum _{i=1}^n \lambda _i \vec {ba_i}\).
Beweis: Es gilt \(a \oplus \sum _{i=1}^n \lambda _i \vec {aa_i} = a \oplus \sum _{i=1}^n \lambda _i (\vec {ab} + \vec {ba_i}) = a \oplus (\vec {ab} + \sum _{i=1}^n \lambda _i \vec
{ba_i})\)
\(= (a \oplus \vec {ab}) \oplus \sum _{i=1}^n \lambda _i \vec {ba_i} = b \oplus \sum _{i=1}^n \lambda _i \vec {ba_i}\).
Affinkombination:
Seien \((\AA , \vec {V}, \oplus )\) ein affiner Raum, \(a_1, \dotsc , a_n \in \AA \) und \(\lambda _1, \dotsc , \lambda _n \in \real \) mit \(\sum _{i=1}^n \lambda _i = 1\).
Dann heißt für beliebiges \(a \in \AA \) der Punkt \(x = a \oplus \sum _{i=1}^n \lambda _i \vec {aa_i}\) Affinkombination der Punkte \(a_i\) mit Gewichten
\(\lambda _i\) (oder der gewichteten Punkte \((a_i, \lambda _i)\)).
Schreibweise: \(x\) ist nach dem Lemma unabhängig von der Wahl von \(a \in \AA \). Daher schreibt man die Affinkombination \(x\) der gewichteten Punkte \((a_i, \lambda _i)\) auch als \(\sum
_{i=1}^n \lambda _i a_i\) (obwohl man die \(a_i\) eigentlich nicht skalieren oder addieren kann).
Satz (affine Abbildungen erhalten Affinkombinationen):
Seien \((\AA _1, \vecs {V}{1}, \oplus )\) und \((\AA _2, \vecs {V}{2}, \boxplus )\) zwei affine Räume und \(F\colon \AA _1 \to \AA _2\) eine affine Abbildung.
Dann gilt für \(a_1, \dotsc , a_n \in \AA _1\) und \(\lambda _1, \dotsc , \lambda _n \in \real \) mit \(\sum _{i=1}^n \lambda _i = 1\) die Gleichung
\(F(\sum _{i=1}^n \lambda _i a_i) = \sum _{i=1}^n \lambda _i F(a_i)\), d. h. \(F\) erhält Affinkombinationen.
Beweis: Sei \(a \in \AA _1\) beliebig. Dann gilt \(F(\sum _{i=1}^n \lambda _i a_i) = F(a \oplus \sum _{i=1}^n \lambda _i \vec {aa_i})\)
\(= F(a) \boxplus f(\sum _{i=1}^n \lambda _i \vec {aa_i}) = F(a) \boxplus \sum _{i=1}^n \lambda _i f(\vec {aa_i}) = F(a) \boxplus \sum _{i=1}^n \lambda _i \vec {F(a)F(a_i)}\)
\(= b \oplus \sum _{i=1}^n \lambda _i \vec {b F(a_i)} = \sum _{i=1}^n \lambda _i F(a_i)\) mit \(b := F(a)\).
Affine Koordinatensysteme
affines Koordinatensystem: Sei \((\AA , \vec {V}, \oplus )\) ein affiner Raum mit \(n := \dim \vec {V} < \infty \).
Eine Familie \((a_0, \dotsc , a_n)\) von \(n+1\) Punkten in \(\AA \) heißt affines Koordinatensystem für \(\AA \) mit Ursprung \(a_0\), falls die Vektoren \(\vec {a_0a_1}, \dotsc , \vec {a_0a_n}\) in \(V\) linear unabhängig sind.
affine Koordinaten: Sei \((a_0, \dotsc , a_n)\) ein affines Koordinatensystem von \((\AA , \vec {V}, \oplus )\).
Dann kann jedes \(x \in \AA \) dargestellt werden als \(x = a_0 \oplus (\sum _{i=1}^n x_i \vec {a_0a_i})\) für eindeutige Skalare \((x_1, \dotsc , x_n) \in \real ^n\), die in diesem Fall die (affinen) Koordinaten von \(x\) heißen.
Satz (Fundamentalsatz der affinen Geometrie):
Seien \((\AA _1, \vecs {V}{1}, \oplus )\) und \((\AA _2, \vecs {V}{2}, \boxplus )\) zwei affine Räume mit \(n := \dim \vecs {V}{1} = \dim \vecs {V}{2} < \infty \) und affinen
Koordinatensystemen \((a_0, \dotsc , a_n)\) bzw. \((b_0, \dotsc , b_n)\).
Dann gibt es genau eine affine Abbildung \(F\colon \AA _1 \to \AA _2\) mit \(\forall _{i=0,\dotsc ,n}\; F(a_i) = b_i\).
\(F\) ist in diesem Fall eine Affinität.
Korollar: Alle affinen Räume derselben endlichen Dimension sind affin isomorph. Daher kann man jedes Problem der endl.-dim. affinen Geometrie im Standardraum \((\real ^n, \vec {\real }^n, +)\)
betrachten.
Satz (Struktur von affinen Abbildungen):
Seien \(\AA := \real ^n\) der affine Standardraum und \(F\colon \AA \to \AA \) eine affine Abbildung.
Dann gibt es \(b \in \real ^n\) und \(A \in \real ^{n \times n}\), sodass \(\forall _{x \in \real ^n}\; F(x) = b \oplus Ax\).
Beweis: Seien \(b := F(0)\), \(f\colon \real ^n \to \real ^n\) eine lineare Abbildung, die \(F\) „zugrunde liegt“, und \(A\) die darstellende Matrix von \(f\). Dann gilt \(F(x) = F(0 \oplus \vec {0x}) = b
\oplus f(\vec {0x}) = (0 \oplus \vec {0b}) \oplus f(\vec {0x})\)
\(= 0 \oplus (\vec {0b} + f(\vec {0x})) = 0 \oplus (\vec {0b} + A\vec {0x})\) und damit \(\vec {0F(x)} = \vec {0b} + A\vec {0x}\). Wegen \(\vec {0y} = y\) (weil \(0 \oplus \vec {y} = \vec {y}\))
für alle \(y \in \real ^n\) gilt daher \(F(x) = b + Ax\).
Beispiele für affine Transformationen in \(\real ^2\):
Streckung: \(A_S := \smallpmatrix {s_x&0\\0&s_y}\)
Drehung: \(A_R := \smallpmatrix {\cos \varphi &-\sin \varphi \\\sin \varphi &\cos \varphi }\)
Scherung: \(A_x := \smallpmatrix {1&c_x\\0&1}\), \(A_y := \smallpmatrix {1&0\\c_y&1}\)
Diese affinen Transformationen kommutieren i. A. nicht!
Beispiele für affine Transformationen in \(\real ^2\):
Streckung: \(A_S := \smallpmatrix {s_x&0&0\\0&s_y&0\\0&0&s_z}\)
Drehung: \(A_{R_x} := \smallpmatrix {1&0&0\\0&\cos \varphi &-\sin \varphi \\0&\sin \varphi &\cos \varphi }\), \(A_{R_y} :=
\smallpmatrix {\cos \varphi &0&\sin \varphi \\0&1&0\\-\sin \varphi &0&\cos \varphi }\), \(A_{R_z} := \smallpmatrix {\cos \varphi &-\sin \varphi &0\\\sin \varphi
&\cos \varphi &0\\0&0&1}\)
Euler-Winkel: Die Euler-Winkel sind drei unabhängige Parameter, mit denen die
Orientierung eines Körpers im Raum beschrieben werden kann. Jede Drehung \(R\) kann beschrieben werden als \(R = R_z(\gamma ) R_x(\beta ) R_z(\alpha )\) (\(x\)-Konvention
(\(z, x’, z’’\))).
Gimbal Lock: Wenn \(\beta = 0\) ist, dann gibt es mehrere verschiedene Winkelpaare \(\alpha , \gamma \), die dieselbe Drehung beschreiben. Die Folge ist, dass man nicht um die \(y\)-Achse rotieren kann, ohne alle
drei Winkel zu verändern. Diese Situation heißt Gimbal Lock.