Schöne Matrizen

\(f\)-invariant:  Sei \(f \in \End _K(V)\) sowie \(U\) ein Unterraum von \(V\).
Dann heißt \(U\) invariant unter \(f\) oder \(f\)-invariant, falls \(f(u) \in U\) ist für alle \(u \in U\).

Die charakteristische Gleichung

Eigenvektor und Eigenwert:  Sei \(f \in \End _K(V)\). Ein Skalar \(\lambda \in K\) heißt Eigenwert (EW) von \(f\), falls es einen Vektor \(v \in V\) (\(v \not = 0\)) gibt, sodass \(f(v) = \lambda v\) ist.
Ein Vektor \(v \in V\) (\(v \not = 0\)) heißt Eigenvektor (EV) zum Eigenwert \(\lambda \in K\), falls \(f(v) = \lambda v\).
Eigenvektoren/-werte einer Matrix \(A \in M_n(K)\) sind Eigenvektoren/-werte von \(f_A: K^n \rightarrow K^n\).

Diagonalmatrix:  Seien \(\lambda _1, \ldots , \lambda _n \in K\).
Die Diagonalmatrix \(\begin {pmatrix}\lambda _1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda _n\end {pmatrix}\) wird mit \(\diag \{\lambda _1, \ldots , \lambda _n\}\) bezeichnet.

Lemma (Diagonalmatrix und Eigenvektor): Sei \(\basis {B} = (v_1, \ldots , v_n)\) eine geordnete Basis von \(V\). Dann ist \(\hommatrix {f}{B}{B} = \diag \{\lambda _1, \ldots , \lambda _n\}\) genau dann, wenn \(v_i\) EV zum EW \(\lambda _i\) ist (\(1 \le i \le n\)).

\(\ell _\lambda \):  Seien \(\lambda \in K\) und \(\basis {B}\) eine beliebige Basis von \(V\) mit \(\dim V = n\). Durch \(\ell _\lambda : V \rightarrow V\), \(v \mapsto \lambda v\) wird ein Endomorphismus \(\ell _\lambda \) von \(V\) definiert. Es gilt \(\hommatrix {\ell _\lambda }{B}{B} = \diag \{\lambda , \ldots , \lambda \} = \lambda \cdot E_n\).

Satz (Eigenwerte eines Endomorphismus):
\(\lambda \in K\) ist Eigenwert von \(f\) genau dann, wenn \(\det (f - \ell _\lambda ) = 0\).

Satz (Eigenwerte einer Matrix):
\(\lambda \in K\) ist Eigenwert von \(A \in M_n(K)\) genau dann, wenn \(\det (A - \lambda E_n) = 0\).

charakteristische Gleichung:  \(\det (A - \lambda E) = 0\) bzw. \(\det (f - \ell _\lambda ) = 0\) ist eine Bestimmungsgleichung für \(\lambda \), die sog. charakteristische Gleichung von \(A\) bzw. \(f\), wenn man \(\lambda \in K\) als Unbestimmte auffasst. Diese Gleichung muss von \(\lambda \) erfüllt werden, damit \(\lambda \) ein Eigenwert von \(A\) bzw. \(f\) ist.

Satz (Polynom): Seien \(f \in \End _K(V)\) (\(\dim _K V = n\)) und \(t \in K\) eine Unbestimmte.
Dann ist \((-1)^n \det (f - \ell _t) = \det (\ell _t - f)\) ein Polynom \(\chi _f(t) \in K[t]\) der Form
\(\chi _f(t) = t^n + \beta _{n-1} t^{n-1} + \cdots + \beta _1 t + \beta _0\) für bestimmte Koeffizienten \(\beta _i \in K\) (\(0 \le i \le n - 1\)).
Insbesondere ist \(\deg \chi _f(t) = n\).

charakteristisches Polynom:  Das Polynom \(\chi _f(t)\) heißt charakteristisches Polynom von \(f\). Ähnlich wird das charakteristische Polynom \(\chi _A(t)\) einer quadratischen Matrix \(A\) definiert.

Folgerung: Ähnliche Matrizen besitzen dasselbe charakteristische Polynom.

Spur:  Sei \(A = (\alpha _{ij}) \in M_{n \times n}(K)\). Dann heißt \(\tr (A) = \sum _{i=1}^n \alpha _{ii}\) die Spur von \(A\).
Für \(f \in \End _K(V)\) (\(\dim _K V = n\)) definiert man die Spur als \(\tr (f) = -\beta _{n-1}\) als den negierten Koeffizienten von \(t^{n-1}\) des charakteristischen Polynoms \(\chi _f(t)\).

Satz (niedrigster Koeffizient): Für den konstanten Term \(\beta _0\) von \(\chi _f(t)\) gilt \(\beta _0 = (-1)^n \det f\).

Satz (höchster Koeffizient): Für \(\beta _{n-1}\) von \(\chi _A(t)\) gilt \(\beta _{n-1} = -\tr (A)\).

Satz (Spur als Homomorphismus): Die Abbildung \(\tr : \End _K(V) \rightarrow K\), \(f \mapsto \tr (f)\) ist \(K\)-linear und für \(f, g \in \End _K(V)\) ist \(\tr (f \circ g) = \tr (g \circ f)\).

Satz (Eigenwerte = Nullstellen): Die Eigenwerte von \(f\) sind genau die Nullstellen von \(\chi _f(t)\).

Eigenraum:  Die Gesamtheit der Eigenvektoren von \(f\) zum Eigenwert \(\lambda \) besteht aus allen Vektoren in \(\ker (f - \ell _\lambda ) \setminus \{0\}\). Der Unterraum \(\ker (f - \ell _\lambda )\) von \(V\) wird Eigenraum zum Eigenwert \(\lambda \) genannt und mit \(V_\lambda (f)\) oder \(V_\lambda \) bezeichnet.

Prozedur (Eigenräume eines Homomorphismus ausrechnen):

  • Man wählt eine Basis von \(V\) und schreibt \(f\) als Matrix \(A\). Dann berechnet man das Polynom \(\det (A - tE)\) (bzw. von \(\chi _f(t) = \chi _A(t) = \det (tE - A) \in K[t]\)).

  • Man bestimmt die Nullstellen \(\lambda _1, \ldots , \lambda _k\) von \(\chi _f(t)\) (Eigenwerte).

  • Für jede Nullstelle \(\lambda _i\) löst man das homogene LGS \((A - \lambda _i E) x = 0\).
    Der Kern \(\ker (A - \lambda _i E) = V_{\lambda _i}(f)\) ist der Eigenraum zum Eigenwert \(\lambda _i\), die Menge der Eigenvektoren zum Eigenwert \(\lambda _i\) ist dann \(V_{\lambda _i}(f) \setminus \{0\}\).

Satz (Dimension des Eigenraums): Die Dimension des Eigenraums von \(f\) zum Eigenwert \(\lambda \in K\) ist kleiner gleich der Vielfachheit von \(\lambda \) als Nullstelle von \(\chi _f(t)\),
d. h. \(\dim (\ker (f - \ell _\lambda )) \le m_\lambda (\chi _f(t))\).

Dreiecksmatrix:  Eine (obere/untere) Dreiecksmatrix ist eine quadratische Matrix, in der alle Einträge unterhalb/oberhalb der Hauptdiagonalen \(0\) sind.

Satz (Dreiecksmatrix \(\Leftrightarrow \) Zerfall in Linearfaktoren): Eine quadratische Matrix ist genau dann zu einer Dreiecksmatrix ähnlich, wenn ihr charakteristisches Polynom in Linearfaktoren zerfällt.

Folgerung: Sei \(K\) algebraisch abgeschlossen und \(A\) eine quadratische Matrix über \(K\).
Dann ist \(A\) zu einer Dreiecksmatrix ähnlich.

Satz (Eigenvektoren linear unabhängig): Eigenvektoren \(v_1, \ldots , v_k \in V\) zu paarweise verschiedenen Eigenwerten \(\lambda _1, \ldots , \lambda _k \in K\) eines Endomorphismus \(f\) von \(V\) sind linear unabhängig.

Satz (Summe der Eigenräume direkt): Seien \(f \in \End _K(V)\), \(\lambda _1, \ldots , \lambda _k \in K\) paarweise verschiedene Eigenwerte von \(f\) und \(V_{\lambda _i}\) der \(i\)-te Eigenraum (\(1 \le i \le k\)). Dann ist die Summe der Eigenräume direkt, d. h. \(\sum _{i=1}^k V_{\lambda _i} = \bigoplus _{i=1}^k V_{\lambda _i}\). Insbesondere ist \(\dim \left (\sum _{i=1}^k V_{\lambda _i}\right ) = \sum _{i=1}^k \dim (V_{\lambda _i})\).

diagonalisierbar (Matrix):  Eine quadratische Matrix heißt diagonalisierbar, falls sie zu einer Diagonalmatrix ähnlich ist.

Satz (diagonalisierbar \(\Leftrightarrow \) Basis aus Eigenvektoren): Eine quadratische Matrix \(A \in M_n(K)\) ist genau dann diagonalisierbar, wenn \(K^n\) eine aus Eigenvektoren von \(A\) bestehende Basis besitzt.

diagonalisierbar (Endomorphismus):  Ein Endomorphismus \(f\) von \(V\) ist diagonalisierbar, falls \(V\) eine Basis aus Eigenvektoren von \(f\) hat.

Satz (Summe der Dimension der Eigenräume): Seien \(\lambda _1, \ldots , \lambda _k\) die verschiedenen Eigenwerte von \(f \in \End _K(V)\). Dann ist \(f\) diagonalisierbar genau dann, wenn
\(\sum _{i=1}^k \dim (V_{\lambda _i}(f)) = n = \dim V\) ist. (Dann zerfällt \(\chi _f\) automatisch in Linearfaktoren.)

Prozedur (quadratische Matrix diagonalisieren):

  • Man berechnet das charakteristische Polynom \(\chi _A(t)\).

  • Man bestimmt die Nullstellen (also die Eigenwerte). Wenn \(A\) diagonalisierbar ist, dann zerfällt \(\chi _A(t)\) in Linearfaktoren, d. h. \(\chi _A(t) = \prod _{i=1}^k (t - \lambda _i)^{\nu _i}\), wobei die \(\lambda _i \in K\) die paarweise verschiedenen Eigenwerte mit \(\nu _i = m_{\lambda _i}(\chi _A(t))\) sind.

  • Man bestimmt eine Basis \(\basis {B}_i\) von \(\ker (A - \lambda _i E) = V_{\lambda _i}\) durch Lösen des zugehörigen homogenen LGS \((A - \lambda _i E)x = 0\).

  • Sei \(\basis {B} = \basis {B}_1 \cup \cdots \cup \basis {B}_k\). Wenn \(A\) diagonalisierbar ist, dann ist \(|B| = n\) und \(B\) ist daher Basis von \(K^n\). Sei \(P = \hommatrix {\id }{\stdbasis {n}}{B}\). Dann ist \(P^{-1}AP = \diag \{\lambda _1, \ldots , \lambda _1, \lambda _2, \ldots , \lambda _k, \ldots , \lambda _k\}\), wobei \(\lambda _i\) genau \(m_{\lambda _i}(\chi _A(t)) = \dim (V_{\lambda _i})\) oft als Eintrag in der Diagonalmatrix vorkommt.

Direkte Summen und Blockdiagonalform

direkte Summe von Endomorphismen:  Seien \(V_1, \ldots , V_k\) \(K\)-Vektorräume und \(f_i: V_i \rightarrow V_i\) Endomorphismen für \(i = 1, \ldots , k\).
Dann wird durch \(f: \bigoplus _{i=1}^k V_i \rightarrow \bigoplus _{i=1}^k V_i\), \(f(v_1, \ldots , v_k) \mapsto (f_1(v_1), \ldots , f_k(v_k))\) ein Endomorphismus \(f\) definiert. \(f = \bigoplus _{i=1}^k f_i\) heißt direkte Summe der Endomorphismen \(f_i\).

Lemma (Blockdiagonalmatrix): Seien \(\basis {B}_i\) eine Basis für \(V_i\), \(n_i = \dim _K V_i\), \(A_i = \matrixm _{f_i}(\basis {B}_i, \basis {B}_i)\),
\(f\) die direkte Summe der \(f_i\) und \(\basis {B} = \basis {B}_1 \cup \cdots \cup \basis {B}_k\) in der natürlichen Ordnung.
Dann ist \(\hommatrix {f}{B}{B} =\) \(\begin {pmatrix}A_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_k\end {pmatrix}\), wobei \(A_i \in M_{n_i}(K)\) für \(i = 1, \ldots , k\).

Blockdiagonalmatrix:  Diese Matrix \(\hommatrix {f}{B}{B}\) heißt Blockdiagonalmatrix und wird auch mit \(\diag \{A_1, \ldots , A_k\}\) bezeichnet.

Satz (Det. einer Blockdiagonalmatrix): Es gilt \(\det f = \det (A_1) \cdots \det (A_k) = \prod _{i=1}^k \det f_i\).

Folgerung: Es gilt \(\chi _f(t) = \chi _{f_1}(t) \cdots \chi _{f_k}(t)\).

Folgerung: Seien \(f \in \End _K(V)\) (wobei \(V\) endlich-dimensional ist), \(V = V_1 \oplus \cdots \oplus V_k\) direkte Summe der \(f\)-invarianten Unterräume \(V_i\) und \(f_i = f|_{V_i}\).
Dann ist \(\det f = \prod _{i=1}^k \det f_i\) sowie \(\chi _f(t) = \prod _{i=1}^k \chi _{f_i}(t)\).

Blockmatrix:  Eine quadratische Matrix \(A = (\alpha _{ij}) \in M_n(K)\) heißt (obere) Blockmatrix, falls sie die Form \(A =\) \(\begin {pmatrix}B & C \\ 0 & D\end {pmatrix}\) hat, wobei \(B \in M_r(K)\), \(C \in M_{r \times (n - r)}(K)\) und \(D \in M_{n - r}(K)\).
Analog werden untere Blockmatrizen definiert.

Satz (Determinante von Blockmatrizen): Sei \(A =\) \(\begin {pmatrix}B & C \\ 0 & D\end {pmatrix}\) eine Blockmatrix.
Dann ist \(\det A = \det B \cdot \det D\) sowie \(\chi _A(t) = \chi _B(t) \cdot \chi _D(t)\).