\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\mathllap }[2][]{{#1#2}}\)
\(\newcommand {\mathrlap }[2][]{{#1#2}}\)
\(\newcommand {\mathclap }[2][]{{#1#2}}\)
\(\newcommand {\mathmbox }[1]{#1}\)
\(\newcommand {\clap }[1]{#1}\)
\(\newcommand {\LWRmathmakebox }[2][]{#2}\)
\(\newcommand {\mathmakebox }[1][]{\LWRmathmakebox }\)
\(\newcommand {\cramped }[2][]{{#1#2}}\)
\(\newcommand {\crampedllap }[2][]{{#1#2}}\)
\(\newcommand {\crampedrlap }[2][]{{#1#2}}\)
\(\newcommand {\crampedclap }[2][]{{#1#2}}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\crampedsubstack }{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\adjustlimits }{}\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\require {extpfeil}\)
\(\Newextarrow \xleftrightarrow {10,10}{0x2194}\)
\(\Newextarrow \xLeftarrow {10,10}{0x21d0}\)
\(\Newextarrow \xhookleftarrow {10,10}{0x21a9}\)
\(\Newextarrow \xmapsto {10,10}{0x21a6}\)
\(\Newextarrow \xRightarrow {10,10}{0x21d2}\)
\(\Newextarrow \xLeftrightarrow {10,10}{0x21d4}\)
\(\Newextarrow \xhookrightarrow {10,10}{0x21aa}\)
\(\Newextarrow \xrightharpoondown {10,10}{0x21c1}\)
\(\Newextarrow \xleftharpoondown {10,10}{0x21bd}\)
\(\Newextarrow \xrightleftharpoons {10,10}{0x21cc}\)
\(\Newextarrow \xrightharpoonup {10,10}{0x21c0}\)
\(\Newextarrow \xleftharpoonup {10,10}{0x21bc}\)
\(\Newextarrow \xleftrightharpoons {10,10}{0x21cb}\)
\(\newcommand {\LWRdounderbracket }[3]{\underset {#3}{\underline {#1}}}\)
\(\newcommand {\LWRunderbracket }[2][]{\LWRdounderbracket {#2}}\)
\(\newcommand {\underbracket }[1][]{\LWRunderbracket }\)
\(\newcommand {\LWRdooverbracket }[3]{\overset {#3}{\overline {#1}}}\)
\(\newcommand {\LWRoverbracket }[2][]{\LWRdooverbracket {#2}}\)
\(\newcommand {\overbracket }[1][]{\LWRoverbracket }\)
\(\newcommand {\LATEXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LATEXoverbrace }[1]{\overbrace {#1}}\)
\(\newenvironment {matrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {smallmatrix*}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {psmallmatrix*}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix*}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix*}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix*}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix*}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newenvironment {psmallmatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bsmallmatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {Bsmallmatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vsmallmatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {Vsmallmatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newenvironment {dcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {dcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {rcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {drcases*}{\begin {cases}}{\end {cases}}\)
\(\newenvironment {cases*}{\begin {cases}}{\end {cases}}\)
\(\newcommand {\MoveEqLeft }[1][]{}\)
\(\def \LWRAboxed #1!|!{\fbox {\(#1\)}&\fbox {\(#2\)}} \newcommand {\Aboxed }[1]{\LWRAboxed #1&&!|!} \)
\( \newcommand {\LWRABLines }[1][\Updownarrow ]{#1 \notag \\}\newcommand {\ArrowBetweenLines }{\ifstar \LWRABLines \LWRABLines } \)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vdotswithin }[1]{\hspace {.5em}\vdots }\)
\(\newcommand {\LWRshortvdotswithinstar }[1]{\vdots \hspace {.5em} & \\}\)
\(\newcommand {\LWRshortvdotswithinnostar }[1]{& \hspace {.5em}\vdots \\}\)
\(\newcommand {\shortvdotswithin }{\ifstar \LWRshortvdotswithinstar \LWRshortvdotswithinnostar }\)
\(\newcommand {\MTFlushSpaceAbove }{}\)
\(\newcommand {\MTFlushSpaceBelow }{\\}\)
\(\newcommand \lparen {(}\)
\(\newcommand \rparen {)}\)
\(\newcommand {\ordinarycolon }{:}\)
\(\newcommand {\vcentcolon }{\mathrel {\mathop \ordinarycolon }}\)
\(\newcommand \dblcolon {\vcentcolon \vcentcolon }\)
\(\newcommand \coloneqq {\vcentcolon =}\)
\(\newcommand \Coloneqq {\dblcolon =}\)
\(\newcommand \coloneq {\vcentcolon {-}}\)
\(\newcommand \Coloneq {\dblcolon {-}}\)
\(\newcommand \eqqcolon {=\vcentcolon }\)
\(\newcommand \Eqqcolon {=\dblcolon }\)
\(\newcommand \eqcolon {\mathrel {-}\vcentcolon }\)
\(\newcommand \Eqcolon {\mathrel {-}\dblcolon }\)
\(\newcommand \colonapprox {\vcentcolon \approx }\)
\(\newcommand \Colonapprox {\dblcolon \approx }\)
\(\newcommand \colonsim {\vcentcolon \sim }\)
\(\newcommand \Colonsim {\dblcolon \sim }\)
\(\newcommand {\nuparrow }{\mathrel {\cancel {\uparrow }}}\)
\(\newcommand {\ndownarrow }{\mathrel {\cancel {\downarrow }}}\)
\(\newcommand {\bigtimes }{\mathop {\Large \times }\limits }\)
\(\newcommand {\prescript }[3]{{}^{#1}_{#2}#3}\)
\(\newenvironment {lgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newenvironment {rgathered}{\begin {gathered}}{\end {gathered}}\)
\(\newcommand {\splitfrac }[2]{{}^{#1}_{#2}}\)
\(\let \splitdfrac \splitfrac \)
\(\newcommand {\LWRoverlaysymbols }[2]{\mathord {\smash {\mathop {#2\strut }\limits ^{\smash {\lower 3ex{#1}}}}\strut }}\)
\(\newcommand{\alphaup}{\unicode{x03B1}}\)
\(\newcommand{\betaup}{\unicode{x03B2}}\)
\(\newcommand{\gammaup}{\unicode{x03B3}}\)
\(\newcommand{\digammaup}{\unicode{x03DD}}\)
\(\newcommand{\deltaup}{\unicode{x03B4}}\)
\(\newcommand{\epsilonup}{\unicode{x03F5}}\)
\(\newcommand{\varepsilonup}{\unicode{x03B5}}\)
\(\newcommand{\zetaup}{\unicode{x03B6}}\)
\(\newcommand{\etaup}{\unicode{x03B7}}\)
\(\newcommand{\thetaup}{\unicode{x03B8}}\)
\(\newcommand{\varthetaup}{\unicode{x03D1}}\)
\(\newcommand{\iotaup}{\unicode{x03B9}}\)
\(\newcommand{\kappaup}{\unicode{x03BA}}\)
\(\newcommand{\varkappaup}{\unicode{x03F0}}\)
\(\newcommand{\lambdaup}{\unicode{x03BB}}\)
\(\newcommand{\muup}{\unicode{x03BC}}\)
\(\newcommand{\nuup}{\unicode{x03BD}}\)
\(\newcommand{\xiup}{\unicode{x03BE}}\)
\(\newcommand{\omicronup}{\unicode{x03BF}}\)
\(\newcommand{\piup}{\unicode{x03C0}}\)
\(\newcommand{\varpiup}{\unicode{x03D6}}\)
\(\newcommand{\rhoup}{\unicode{x03C1}}\)
\(\newcommand{\varrhoup}{\unicode{x03F1}}\)
\(\newcommand{\sigmaup}{\unicode{x03C3}}\)
\(\newcommand{\varsigmaup}{\unicode{x03C2}}\)
\(\newcommand{\tauup}{\unicode{x03C4}}\)
\(\newcommand{\upsilonup}{\unicode{x03C5}}\)
\(\newcommand{\phiup}{\unicode{x03D5}}\)
\(\newcommand{\varphiup}{\unicode{x03C6}}\)
\(\newcommand{\chiup}{\unicode{x03C7}}\)
\(\newcommand{\psiup}{\unicode{x03C8}}\)
\(\newcommand{\omegaup}{\unicode{x03C9}}\)
\(\newcommand{\Alphaup}{\unicode{x0391}}\)
\(\newcommand{\Betaup}{\unicode{x0392}}\)
\(\newcommand{\Gammaup}{\unicode{x0393}}\)
\(\newcommand{\Digammaup}{\unicode{x03DC}}\)
\(\newcommand{\Deltaup}{\unicode{x0394}}\)
\(\newcommand{\Epsilonup}{\unicode{x0395}}\)
\(\newcommand{\Zetaup}{\unicode{x0396}}\)
\(\newcommand{\Etaup}{\unicode{x0397}}\)
\(\newcommand{\Thetaup}{\unicode{x0398}}\)
\(\newcommand{\Varthetaup}{\unicode{x03F4}}\)
\(\newcommand{\Iotaup}{\unicode{x0399}}\)
\(\newcommand{\Kappaup}{\unicode{x039A}}\)
\(\newcommand{\Lambdaup}{\unicode{x039B}}\)
\(\newcommand{\Muup}{\unicode{x039C}}\)
\(\newcommand{\Nuup}{\unicode{x039D}}\)
\(\newcommand{\Xiup}{\unicode{x039E}}\)
\(\newcommand{\Omicronup}{\unicode{x039F}}\)
\(\newcommand{\Piup}{\unicode{x03A0}}\)
\(\newcommand{\Varpiup}{\unicode{x03D6}}\)
\(\newcommand{\Rhoup}{\unicode{x03A1}}\)
\(\newcommand{\Sigmaup}{\unicode{x03A3}}\)
\(\newcommand{\Tauup}{\unicode{x03A4}}\)
\(\newcommand{\Upsilonup}{\unicode{x03A5}}\)
\(\newcommand{\Phiup}{\unicode{x03A6}}\)
\(\newcommand{\Chiup}{\unicode{x03A7}}\)
\(\newcommand{\Psiup}{\unicode{x03A8}}\)
\(\newcommand{\Omegaup}{\unicode{x03A9}}\)
\(\newcommand{\alphait}{\unicode{x1D6FC}}\)
\(\newcommand{\betait}{\unicode{x1D6FD}}\)
\(\newcommand{\gammait}{\unicode{x1D6FE}}\)
\(\newcommand{\digammait}{\mathit{\unicode{x03DD}}}\)
\(\newcommand{\deltait}{\unicode{x1D6FF}}\)
\(\newcommand{\epsilonit}{\unicode{x1D716}}\)
\(\newcommand{\varepsilonit}{\unicode{x1D700}}\)
\(\newcommand{\zetait}{\unicode{x1D701}}\)
\(\newcommand{\etait}{\unicode{x1D702}}\)
\(\newcommand{\thetait}{\unicode{x1D703}}\)
\(\newcommand{\varthetait}{\unicode{x1D717}}\)
\(\newcommand{\iotait}{\unicode{x1D704}}\)
\(\newcommand{\kappait}{\unicode{x1D705}}\)
\(\newcommand{\varkappait}{\unicode{x1D718}}\)
\(\newcommand{\lambdait}{\unicode{x1D706}}\)
\(\newcommand{\muit}{\unicode{x1D707}}\)
\(\newcommand{\nuit}{\unicode{x1D708}}\)
\(\newcommand{\xiit}{\unicode{x1D709}}\)
\(\newcommand{\omicronit}{\unicode{x1D70A}}\)
\(\newcommand{\piit}{\unicode{x1D70B}}\)
\(\newcommand{\varpiit}{\unicode{x1D71B}}\)
\(\newcommand{\rhoit}{\unicode{x1D70C}}\)
\(\newcommand{\varrhoit}{\unicode{x1D71A}}\)
\(\newcommand{\sigmait}{\unicode{x1D70E}}\)
\(\newcommand{\varsigmait}{\unicode{x1D70D}}\)
\(\newcommand{\tauit}{\unicode{x1D70F}}\)
\(\newcommand{\upsilonit}{\unicode{x1D710}}\)
\(\newcommand{\phiit}{\unicode{x1D719}}\)
\(\newcommand{\varphiit}{\unicode{x1D711}}\)
\(\newcommand{\chiit}{\unicode{x1D712}}\)
\(\newcommand{\psiit}{\unicode{x1D713}}\)
\(\newcommand{\omegait}{\unicode{x1D714}}\)
\(\newcommand{\Alphait}{\unicode{x1D6E2}}\)
\(\newcommand{\Betait}{\unicode{x1D6E3}}\)
\(\newcommand{\Gammait}{\unicode{x1D6E4}}\)
\(\newcommand{\Digammait}{\mathit{\unicode{x03DC}}}\)
\(\newcommand{\Deltait}{\unicode{x1D6E5}}\)
\(\newcommand{\Epsilonit}{\unicode{x1D6E6}}\)
\(\newcommand{\Zetait}{\unicode{x1D6E7}}\)
\(\newcommand{\Etait}{\unicode{x1D6E8}}\)
\(\newcommand{\Thetait}{\unicode{x1D6E9}}\)
\(\newcommand{\Varthetait}{\unicode{x1D6F3}}\)
\(\newcommand{\Iotait}{\unicode{x1D6EA}}\)
\(\newcommand{\Kappait}{\unicode{x1D6EB}}\)
\(\newcommand{\Lambdait}{\unicode{x1D6EC}}\)
\(\newcommand{\Muit}{\unicode{x1D6ED}}\)
\(\newcommand{\Nuit}{\unicode{x1D6EE}}\)
\(\newcommand{\Xiit}{\unicode{x1D6EF}}\)
\(\newcommand{\Omicronit}{\unicode{x1D6F0}}\)
\(\newcommand{\Piit}{\unicode{x1D6F1}}\)
\(\newcommand{\Rhoit}{\unicode{x1D6F2}}\)
\(\newcommand{\Sigmait}{\unicode{x1D6F4}}\)
\(\newcommand{\Tauit}{\unicode{x1D6F5}}\)
\(\newcommand{\Upsilonit}{\unicode{x1D6F6}}\)
\(\newcommand{\Phiit}{\unicode{x1D6F7}}\)
\(\newcommand{\Chiit}{\unicode{x1D6F8}}\)
\(\newcommand{\Psiit}{\unicode{x1D6F9}}\)
\(\newcommand{\Omegait}{\unicode{x1D6FA}}\)
\(\let \digammaup \Digammaup \)
\(\renewcommand {\digammait }{\mathit {\digammaup }}\)
\(\newcommand {\smallin }{\unicode {x220A}}\)
\(\newcommand {\smallowns }{\unicode {x220D}}\)
\(\newcommand {\notsmallin }{\LWRoverlaysymbols {/}{\unicode {x220A}}}\)
\(\newcommand {\notsmallowns }{\LWRoverlaysymbols {/}{\unicode {x220D}}}\)
\(\newcommand {\rightangle }{\unicode {x221F}}\)
\(\newcommand {\intclockwise }{\unicode {x2231}}\)
\(\newcommand {\ointclockwise }{\unicode {x2232}}\)
\(\newcommand {\ointctrclockwise }{\unicode {x2233}}\)
\(\newcommand {\oiint }{\unicode {x222F}}\)
\(\newcommand {\oiiint }{\unicode {x2230}}\)
\(\newcommand {\ddag }{\unicode {x2021}}\)
\(\newcommand {\P }{\unicode {x00B6}}\)
\(\newcommand {\copyright }{\unicode {x00A9}}\)
\(\newcommand {\dag }{\unicode {x2020}}\)
\(\newcommand {\pounds }{\unicode {x00A3}}\)
\(\newcommand {\iddots }{\unicode {x22F0}}\)
\(\newcommand {\utimes }{\overline {\times }}\)
\(\newcommand {\dtimes }{\underline {\times }}\)
\(\newcommand {\udtimes }{\overline {\underline {\times }}}\)
\(\newcommand {\leftwave }{\left \{}\)
\(\newcommand {\rightwave }{\right \}}\)
\(\newcommand {\toprule }[1][]{\hline }\)
\(\let \midrule \toprule \)
\(\let \bottomrule \toprule \)
\(\newcommand {\cmidrule }[2][]{}\)
\(\newcommand {\morecmidrules }{}\)
\(\newcommand {\specialrule }[3]{\hline }\)
\(\newcommand {\addlinespace }[1][]{}\)
\(\newcommand {\LWRsubmultirow }[2][]{#2}\)
\(\newcommand {\LWRmultirow }[2][]{\LWRsubmultirow }\)
\(\newcommand {\multirow }[2][]{\LWRmultirow }\)
\(\newcommand {\mrowcell }{}\)
\(\newcommand {\mcolrowcell }{}\)
\(\newcommand {\STneed }[1]{}\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\newcommand {\tothe }[1]{^{#1}}\)
\(\newcommand {\raiseto }[2]{{#2}^{#1}}\)
\(\newcommand {\ang }[2][]{(\mathrm {#2})\degree }\)
\(\newcommand {\num }[2][]{\mathrm {#2}}\)
\(\newcommand {\si }[2][]{\mathrm {#2}}\)
\(\newcommand {\LWRSI }[2][]{\mathrm {#1\LWRSInumber \,#2}}\)
\(\newcommand {\SI }[2][]{\def \LWRSInumber {#2}\LWRSI }\)
\(\newcommand {\numlist }[2][]{\mathrm {#2}}\)
\(\newcommand {\numrange }[3][]{\mathrm {#2\,\unicode {x2013}\,#3}}\)
\(\newcommand {\SIlist }[3][]{\mathrm {#2\,#3}}\)
\(\newcommand {\SIrange }[4][]{\mathrm {#2\,#4\,\unicode {x2013}\,#3\,#4}}\)
\(\newcommand {\tablenum }[2][]{\mathrm {#2}}\)
\(\newcommand {\ampere }{\mathrm {A}}\)
\(\newcommand {\candela }{\mathrm {cd}}\)
\(\newcommand {\kelvin }{\mathrm {K}}\)
\(\newcommand {\kilogram }{\mathrm {kg}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\mole }{\mathrm {mol}}\)
\(\newcommand {\second }{\mathrm {s}}\)
\(\newcommand {\becquerel }{\mathrm {Bq}}\)
\(\newcommand {\degreeCelsius }{\unicode {x2103}}\)
\(\newcommand {\coulomb }{\mathrm {C}}\)
\(\newcommand {\farad }{\mathrm {F}}\)
\(\newcommand {\gray }{\mathrm {Gy}}\)
\(\newcommand {\hertz }{\mathrm {Hz}}\)
\(\newcommand {\henry }{\mathrm {H}}\)
\(\newcommand {\joule }{\mathrm {J}}\)
\(\newcommand {\katal }{\mathrm {kat}}\)
\(\newcommand {\lumen }{\mathrm {lm}}\)
\(\newcommand {\lux }{\mathrm {lx}}\)
\(\newcommand {\newton }{\mathrm {N}}\)
\(\newcommand {\ohm }{\mathrm {\Omega }}\)
\(\newcommand {\pascal }{\mathrm {Pa}}\)
\(\newcommand {\radian }{\mathrm {rad}}\)
\(\newcommand {\siemens }{\mathrm {S}}\)
\(\newcommand {\sievert }{\mathrm {Sv}}\)
\(\newcommand {\steradian }{\mathrm {sr}}\)
\(\newcommand {\tesla }{\mathrm {T}}\)
\(\newcommand {\volt }{\mathrm {V}}\)
\(\newcommand {\watt }{\mathrm {W}}\)
\(\newcommand {\weber }{\mathrm {Wb}}\)
\(\newcommand {\day }{\mathrm {d}}\)
\(\newcommand {\degree }{\mathrm {^\circ }}\)
\(\newcommand {\hectare }{\mathrm {ha}}\)
\(\newcommand {\hour }{\mathrm {h}}\)
\(\newcommand {\litre }{\mathrm {l}}\)
\(\newcommand {\liter }{\mathrm {L}}\)
\(\newcommand {\arcminute }{^\prime }\)
\(\newcommand {\minute }{\mathrm {min}}\)
\(\newcommand {\arcsecond }{^{\prime \prime }}\)
\(\newcommand {\tonne }{\mathrm {t}}\)
\(\newcommand {\astronomicalunit }{au}\)
\(\newcommand {\atomicmassunit }{u}\)
\(\newcommand {\bohr }{\mathit {a}_0}\)
\(\newcommand {\clight }{\mathit {c}_0}\)
\(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\)
\(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\)
\(\newcommand {\electronvolt }{\mathrm {eV}}\)
\(\newcommand {\elementarycharge }{\mathit {e}}\)
\(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\)
\(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\)
\(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\)
\(\let \LWRorigbar \bar \)
\(\newcommand {\bar }{\mathrm {bar}}\)
\(\newcommand {\barn }{\mathrm {b}}\)
\(\newcommand {\bel }{\mathrm {B}}\)
\(\newcommand {\decibel }{\mathrm {dB}}\)
\(\newcommand {\knot }{\mathrm {kn}}\)
\(\newcommand {\mmHg }{\mathrm {mmHg}}\)
\(\newcommand {\nauticalmile }{\mathrm {M}}\)
\(\newcommand {\neper }{\mathrm {Np}}\)
\(\newcommand {\yocto }{\mathrm {y}}\)
\(\newcommand {\zepto }{\mathrm {z}}\)
\(\newcommand {\atto }{\mathrm {a}}\)
\(\newcommand {\femto }{\mathrm {f}}\)
\(\newcommand {\pico }{\mathrm {p}}\)
\(\newcommand {\nano }{\mathrm {n}}\)
\(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\)
\(\newcommand {\milli }{\mathrm {m}}\)
\(\newcommand {\centi }{\mathrm {c}}\)
\(\newcommand {\deci }{\mathrm {d}}\)
\(\newcommand {\deca }{\mathrm {da}}\)
\(\newcommand {\hecto }{\mathrm {h}}\)
\(\newcommand {\kilo }{\mathrm {k}}\)
\(\newcommand {\mega }{\mathrm {M}}\)
\(\newcommand {\giga }{\mathrm {G}}\)
\(\newcommand {\tera }{\mathrm {T}}\)
\(\newcommand {\peta }{\mathrm {P}}\)
\(\newcommand {\exa }{\mathrm {E}}\)
\(\newcommand {\zetta }{\mathrm {Z}}\)
\(\newcommand {\yotta }{\mathrm {Y}}\)
\(\newcommand {\percent }{\mathrm {\%}}\)
\(\newcommand {\meter }{\mathrm {m}}\)
\(\newcommand {\metre }{\mathrm {m}}\)
\(\newcommand {\gram }{\mathrm {g}}\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\of }[1]{_{\mathrm {#1}}}\)
\(\newcommand {\squared }{^2}\)
\(\newcommand {\square }[1]{\mathrm {#1}^2}\)
\(\newcommand {\cubed }{^3}\)
\(\newcommand {\cubic }[1]{\mathrm {#1}^3}\)
\(\newcommand {\per }{/}\)
\(\newcommand {\celsius }{\unicode {x2103}}\)
\(\newcommand {\fg }{\femto \gram }\)
\(\newcommand {\pg }{\pico \gram }\)
\(\newcommand {\ng }{\nano \gram }\)
\(\newcommand {\ug }{\micro \gram }\)
\(\newcommand {\mg }{\milli \gram }\)
\(\newcommand {\g }{\gram }\)
\(\newcommand {\kg }{\kilo \gram }\)
\(\newcommand {\amu }{\mathrm {u}}\)
\(\newcommand {\nm }{\nano \metre }\)
\(\newcommand {\um }{\micro \metre }\)
\(\newcommand {\mm }{\milli \metre }\)
\(\newcommand {\cm }{\centi \metre }\)
\(\newcommand {\dm }{\deci \metre }\)
\(\newcommand {\m }{\metre }\)
\(\newcommand {\km }{\kilo \metre }\)
\(\newcommand {\as }{\atto \second }\)
\(\newcommand {\fs }{\femto \second }\)
\(\newcommand {\ps }{\pico \second }\)
\(\newcommand {\ns }{\nano \second }\)
\(\newcommand {\us }{\micro \second }\)
\(\newcommand {\ms }{\milli \second }\)
\(\newcommand {\s }{\second }\)
\(\newcommand {\fmol }{\femto \mol }\)
\(\newcommand {\pmol }{\pico \mol }\)
\(\newcommand {\nmol }{\nano \mol }\)
\(\newcommand {\umol }{\micro \mol }\)
\(\newcommand {\mmol }{\milli \mol }\)
\(\newcommand {\mol }{\mol }\)
\(\newcommand {\kmol }{\kilo \mol }\)
\(\newcommand {\pA }{\pico \ampere }\)
\(\newcommand {\nA }{\nano \ampere }\)
\(\newcommand {\uA }{\micro \ampere }\)
\(\newcommand {\mA }{\milli \ampere }\)
\(\newcommand {\A }{\ampere }\)
\(\newcommand {\kA }{\kilo \ampere }\)
\(\newcommand {\ul }{\micro \litre }\)
\(\newcommand {\ml }{\milli \litre }\)
\(\newcommand {\l }{\litre }\)
\(\newcommand {\hl }{\hecto \litre }\)
\(\newcommand {\uL }{\micro \liter }\)
\(\newcommand {\mL }{\milli \liter }\)
\(\newcommand {\L }{\liter }\)
\(\newcommand {\hL }{\hecto \liter }\)
\(\newcommand {\mHz }{\milli \hertz }\)
\(\newcommand {\Hz }{\hertz }\)
\(\newcommand {\kHz }{\kilo \hertz }\)
\(\newcommand {\MHz }{\mega \hertz }\)
\(\newcommand {\GHz }{\giga \hertz }\)
\(\newcommand {\THz }{\tera \hertz }\)
\(\newcommand {\mN }{\milli \newton }\)
\(\newcommand {\N }{\newton }\)
\(\newcommand {\kN }{\kilo \newton }\)
\(\newcommand {\MN }{\mega \newton }\)
\(\newcommand {\Pa }{\pascal }\)
\(\newcommand {\kPa }{\kilo \pascal }\)
\(\newcommand {\MPa }{\mega \pascal }\)
\(\newcommand {\GPa }{\giga \pascal }\)
\(\newcommand {\mohm }{\milli \ohm }\)
\(\newcommand {\kohm }{\kilo \ohm }\)
\(\newcommand {\Mohm }{\mega \ohm }\)
\(\newcommand {\pV }{\pico \volt }\)
\(\newcommand {\nV }{\nano \volt }\)
\(\newcommand {\uV }{\micro \volt }\)
\(\newcommand {\mV }{\milli \volt }\)
\(\newcommand {\V }{\volt }\)
\(\newcommand {\kV }{\kilo \volt }\)
\(\newcommand {\W }{\watt }\)
\(\newcommand {\uW }{\micro \watt }\)
\(\newcommand {\mW }{\milli \watt }\)
\(\newcommand {\kW }{\kilo \watt }\)
\(\newcommand {\MW }{\mega \watt }\)
\(\newcommand {\GW }{\giga \watt }\)
\(\newcommand {\J }{\joule }\)
\(\newcommand {\uJ }{\micro \joule }\)
\(\newcommand {\mJ }{\milli \joule }\)
\(\newcommand {\kJ }{\kilo \joule }\)
\(\newcommand {\eV }{\electronvolt }\)
\(\newcommand {\meV }{\milli \electronvolt }\)
\(\newcommand {\keV }{\kilo \electronvolt }\)
\(\newcommand {\MeV }{\mega \electronvolt }\)
\(\newcommand {\GeV }{\giga \electronvolt }\)
\(\newcommand {\TeV }{\tera \electronvolt }\)
\(\newcommand {\kWh }{\kilo \watt \hour }\)
\(\newcommand {\F }{\farad }\)
\(\newcommand {\fF }{\femto \farad }\)
\(\newcommand {\pF }{\pico \farad }\)
\(\newcommand {\K }{\mathrm {K}}\)
\(\newcommand {\dB }{\mathrm {dB}}\)
\(\newcommand {\kibi }{\mathrm {Ki}}\)
\(\newcommand {\mebi }{\mathrm {Mi}}\)
\(\newcommand {\gibi }{\mathrm {Gi}}\)
\(\newcommand {\tebi }{\mathrm {Ti}}\)
\(\newcommand {\pebi }{\mathrm {Pi}}\)
\(\newcommand {\exbi }{\mathrm {Ei}}\)
\(\newcommand {\zebi }{\mathrm {Zi}}\)
\(\newcommand {\yobi }{\mathrm {Yi}}\)
\(\require {mhchem}\)
\(\require {cancel}\)
\(\newcommand {\fint }{âĺŊ}\)
\(\newcommand {\hdots }{\cdots }\)
\(\newcommand {\mathnormal }[1]{#1}\)
\(\newcommand {\vecs }[2]{\vec {#1}_{#2}}\)
\(\newcommand {\Vb }{\ensuremath {\operatorname {Vb}}}\)
\(\newcommand {\Nb }{\ensuremath {\operatorname {Nb}}}\)
\(\newcommand {\card }{\ensuremath {\operatorname {card}}}\)
\(\renewcommand {\Re }{\ensuremath {\operatorname {Re}}}\)
\(\renewcommand {\Im }{\ensuremath {\operatorname {Im}}}\)
\(\newcommand {\Ln }{\ensuremath {\operatorname {Ln}}}\)
\(\newcommand {\CF }{\ensuremath {\operatorname {CF}}}\)
\(\newcommand {\acc }{\ensuremath {\operatorname {acc}}}\)
\(\newcommand {\iso }{\ensuremath {\operatorname {iso}}}\)
\(\newcommand {\interior }{\ensuremath {\operatorname {int}}}\)
\(\newcommand {\exterior }{\ensuremath {\operatorname {ext}}}\)
\(\newcommand {\sgn }{\ensuremath {\operatorname {sgn}}}\)
\(\newcommand {\arccot }{\ensuremath {\operatorname {arccot}}}\)
\(\newcommand {\arsinh }{\ensuremath {\operatorname {arsinh}}}\)
\(\newcommand {\arcosh }{\ensuremath {\operatorname {arcosh}}}\)
\(\newcommand {\artanh }{\ensuremath {\operatorname {artanh}}}\)
\(\newcommand {\arcoth }{\ensuremath {\operatorname {arcoth}}}\)
\(\newcommand {\name }[1]{\textsc {#1}}\)
\(\newcommand {\smallpmatrix }[1]{\left (\begin {smallmatrix}#1\end {smallmatrix}\right )}\)
\(\newcommand {\matlab }{{\fontfamily {bch}\scshape \selectfont {}Matlab}}\)
\(\newcommand {\innerproduct }[1]{\left \langle {#1}\right \rangle }\)
\(\newcommand {\norm }[1]{\left \Vert {#1}\right \Vert }\)
\(\renewcommand {\natural }{\mathbb {N}}\)
\(\newcommand {\integer }{\mathbb {Z}}\)
\(\newcommand {\rational }{\mathbb {Q}}\)
\(\newcommand {\real }{\mathbb {R}}\)
\(\newcommand {\complex }{\mathbb {C}}\)
\(\renewcommand {\d }{\mathop {}\!\mathrm {d}}\)
\(\newcommand {\dr }{\d {}r}\)
\(\newcommand {\ds }{\d {}s}\)
\(\newcommand {\dt }{\d {}t}\)
\(\newcommand {\du }{\d {}u}\)
\(\newcommand {\dv }{\d {}v}\)
\(\newcommand {\dw }{\d {}w}\)
\(\newcommand {\dx }{\d {}x}\)
\(\newcommand {\dy }{\d {}y}\)
\(\newcommand {\dz }{\d {}z}\)
\(\newcommand {\dsigma }{\d {}\sigma }\)
\(\newcommand {\dphi }{\d {}\phi }\)
\(\newcommand {\dvarphi }{\d {}\varphi }\)
\(\newcommand {\dtau }{\d {}\tau }\)
\(\newcommand {\dxi }{\d {}\xi }\)
\(\newcommand {\dtheta }{\d {}\theta }\)
\(\newcommand {\tp }{\mathrm {T}}\)
Die Definition der Ableitung
Sei \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\) eine Funktion mit \(X\) offen, d. h. für einen Punkt \(x_0 \in X\) ist
\(\exists _{\varepsilon > 0}\; U_\varepsilon (x_0) \subset X\). Daraus folgt \(x_0 + h \in X\) für \(|h| < \varepsilon \).
\(\varphi (h, x_0) =\) \(\frac {f(x_0 + h) - f(x_0)}{h}\) heißt Differenzenquotient (\(|h| < \varepsilon \), \(h \not = 0\)).
\(f\) heißt im Punkt \(x_0 \in X\) differenzierbar, falls der Grenzwert
\(\lim _{h \to 0} \varphi (h, x_0) =: f’(x_0) = f’|_{x=x_0} =\) \(\frac {df}{dx}\)\(\big |_{x=x_0}\) existiert.
\(f\) heißt differenzierbar in \(X\), falls \(f\) in allen Punkten \(x_0 \in X\) differenzierbar ist.
Für Funktionen \(f: X \subset \mathbb {C} \rightarrow \mathbb {C}\) kann man für \(x_0 \in X \cap \mathbb {R}\) die komplexe bzw. reelle Ableitung \((\mathbb {C}) - f’(x_0) =
\lim _{h \to 0,\; h \in \mathbb {C}} \frac {f(x_0 + h) - f(x_0)}{h}\) bzw. \((\mathbb {R}) - f’(x_0) = \lim _{h \to 0,\; h \in \mathbb {R}} \frac {f|_{\mathbb {R}}(x_0 + h) - f|_{\mathbb
{R}}(x_0)}{h}\) betrachten. Existieren die Grenzwerte, so heißt \(f\) komplex bzw. reell differenzierbar.
Satz: Ist \(f: X \subset \mathbb {C} \rightarrow \mathbb {C}\) in \(x_0 \in \mathbb {R} \cap X\) \((\mathbb {C})\)-differenzierbar, so ist sie auch \((\mathbb {R})\)-differenzierbar und \((\mathbb {C}) -
f’(x_0) = (\mathbb {R}) - f’(x_0)\). Die Umkehrung gilt nicht!
Satz: Eine komplexwertige Funktion \(f: X \subset \mathbb {R} \rightarrow \mathbb {C}\), \(f = g + ik\) (\(g,k: X \subset \mathbb {R} \rightarrow \mathbb {R}\)) ist genau dann reell differenzierbar,
wenn Real- und Imaginärteil reell differenzierbar sind.
Satz: Ist \(f: X \subset \mathbb {C} \rightarrow \mathbb {R}\) in \(z_0 \in X\) komplex differenzierbar, so ist \((\mathbb {C}) - f’(z_0) = 0\).
Die Landau-Symbole
Seien \(M\) ein metrischer Raum, \(f, g: X \subset M \rightarrow \mathbb {K}^n\) sowie \(x_0 \in \acc (X)\).
Landau-Symbole: \(f \overset {x \to x_0}{=} \mathcal {O}(g) \;\Leftrightarrow \; \exists _{C \in \mathbb {R}} \exists _{\delta > 0} \forall _{x \in X
\cap U_\delta (x_0)}\; \Vert f(x) \Vert \le C \Vert g(x) \Vert \),
\(f \overset {x \to x_0}{=} o(g) \;\Leftrightarrow \; \forall _{\varepsilon > 0} \exists _{\delta = \delta (\varepsilon )} \forall _{x \in X \cap U_\delta (x_0)}\; \Vert f(x) \Vert \le
\varepsilon \Vert g(x) \Vert \) (in \(\mathbb {K}\) ist die Norm der Betrag)
Satz: Sei \(x \to x_0 \in \acc (X)\). Dann gilt \(f = o(g) \;\Rightarrow \; f = \mathcal {O}(g)\),
\(f_1 = \mathcal {O}(g) \land f_2 = \mathcal {O}(g) \;\Rightarrow \; f_1 \pm f_2 = \mathcal {O}(g)\), \(f_1 = o(g) \land f_2 = o(g) \;\Rightarrow \; f_1 \pm f_2 = o(g)\) sowie
\(f_1 = o(g) \land f_2 = \mathcal {O}(g) \;\Rightarrow \; f_1 \pm f_2 = \mathcal {O}(g)\).
Satz: Seien \(f, g: X \subset M \rightarrow \mathbb {K}^n\), \(\gamma , \psi : X \subset M \rightarrow \mathbb {K}\). Dann gilt
\(\psi = \mathcal {O}(\gamma ) \land f = \mathcal {O}(g) \;\Rightarrow \; \psi f = \mathcal {O}(\gamma g)\), \(\psi = o(\gamma ) \land f = \mathcal {O}(g) \;\Rightarrow \; \psi
f = o(\gamma g)\) sowie
\(\psi = \mathcal {O}(\gamma ) \land f = o(g) \;\Rightarrow \; \psi f = o(\gamma g)\).
Schreibweise: \(f_1 - f_2 = \mathcal {O}(g) \;\Leftrightarrow \; f_1 = f_2 + \mathcal {O}(g)\), \(f_1 - f_2 = o(g) \;\Leftrightarrow \; f_1 = f_2 + o(g)\)
Anmerkung: Ist \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\) und \(x \to x_0 = 0\), dann ist \(f(x) = o(x) \;\Leftrightarrow \; f(x) = x \tilde {f}(x)\) mit \(\tilde {f}(x) = o(1)\)
(bzw. \(f(x) = \mathcal {O}(x) \;\Leftrightarrow \; f(x) = x \tilde {f}(x)\) mit \(\tilde {f}(x) = \mathcal {O}(1)\)).
Anwendungen:
\(f \overset {x \to x_0}{=} \mathcal {O}(1)\) \(\;\Leftrightarrow \;\) \(f\) ist in einer geeigneten \(\delta \)-Umgebung von \(x_0\) beschränkt
\(f \overset {x \to x_0}{=} o(1)\) \(\;\Leftrightarrow \;\) \((\lim _{x \to x_0} f(x) = 0) \land (x_0 \in X \Rightarrow f(x_0) = 0)\)
\(f(x_0 + h) \overset {h \to 0}{=} f(x_0) + o(1)\) \(\;\Leftrightarrow \;\) \(f\) ist stetig in \(x_0\)
\(f(x_0 + h) - f(x_0) \overset {h \to 0}{=} hF + o(h)\) \(\;\Leftrightarrow \;\) \(f\) ist in \(x_0\) differenzierbar und \(f’(x_0) = F\)
Folgerung: Ist \(f\) im Punkt \(x_0\) differenzierbar, so ist \(f\) im Punkt \(x_0\) stetig.
Die Umkehrung gilt nicht!
Das Rechnen mit Ableitungen
Seien \(\mathbb {K} \in \{\mathbb {R}, \mathbb {C}\}\), \(X \subset \mathbb {K}\) offen, \(x_0 \in X\), \(f, f_1, f_2: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\), \(g: X \subset
\mathbb {K} \rightarrow \mathbb {K}\),
\(f, f_1, f_2, g\) im Punkt \(x_0 \in X\) differenzierbar,
\(\psi : Y \subset \mathbb {K} \rightarrow \mathbb {K}\), \(Y\) offen, \(y_0 \in Y\) mit \(\psi (y_0) = x_0\), \(\psi \) im Punkt \(y_0 \in Y\) differenzierbar.
Dann ist \((f_1 + f_2)’|_{x=x_0} = f_1’|_{x=x_0} + f_2’|_{x=x_0}\), \((\alpha f)’|_{x=x_0} = \alpha (f’|_{x=x_0})\),
\((gf)’|_{x=x_0} = g’|_{x=x_0} f(x_0) + g(x_0) f’|_{x=x_0}\) sowie \((f \circ \psi )’|_{y=y_0} = f’|_{x=x_0=\psi (y_0)} \cdot \psi ’|_{y=y_0}\).
Folgerung: Seien \(X \subset \mathbb {K}\) offen, \(x_0 \in X\), \(f, g: X \subset \mathbb {K} \rightarrow \mathbb {K}\), \(g(x) \not = 0\) für alle \(x \in X\),
\(f, g\) differenzierbar in \(x_0 \in X\). Dann ist \(\left (\frac {f}{g}\right )’\Big |_{x=x_0} = \frac {f’(x_0) g(x_0) - f(x_0) g’(x_0)}{(g(x_0))^2}\).
Satz: Seien \(X, Y \subset \mathbb {K}\) offen, \(x_0 \in X\), \(y_0 \in Y\), \(f: X \rightarrow Y\) bijektiv mit \(y_0 = f(x_0)\),
\(f^{-1}\) stetig im Punkt \(y_0\) sowie \(f\) differenzierbar in \(x_0\) mit \(f’(x_0) \not = 0\).
Dann ist \(f^{-1}\) in \(y_0\) differenzierbar mit \((f^{-1})’(y_0) =\) \(\frac {1}{f’(x_0)}\).
Ableitungen wichtiger Funktionen
\((\text {const.})’ = 0\) |
\((z)’ = 1\) |
\((z^\alpha )’ = \alpha z^{\alpha - 1}\) |
|
|
\((e^z)’ = e^z\) |
\((\Ln z)’ =\) \(\frac {1}{z}\) |
|
|
|
\((\sin z)’ = \cos z\) |
\((\cos z)’ = -\sin z\) |
\((\tan z)’ =\) \(\frac {1}{\cos ^2 z}\) |
\((\cot z)’ =\) \(-\frac {1}{\sin ^2 z}\) |
|
\((\sinh z)’ = \cosh z\) |
\((\cosh z)’ = \sinh z\) |
\((\tanh z)’ =\) \(\frac {1}{\cosh ^2 z}\) |
\((\coth z)’ =\) \(-\frac {1}{\sinh ^2 z}\) |
|
\((\arcsin z)’ =\) \(\frac {1}{\sqrt {1 - z^2}}\) |
\((\arccos z)’ =\) \(-\frac {1}{\sqrt {1 - z^2}}\) |
\((\arctan z)’ =\) \(\frac {1}{1 + z^2}\) |
\((\arccot z)’ =\) \(-\frac {1}{1 + z^2}\) |
|
\((\arsinh z)’ =\) \(\frac {1}{\sqrt {z^2 + 1}}\) |
\((\arcosh z)’ =\) \(\frac {1}{\sqrt {z^2 - 1}}\) |
\((\artanh z)’ =\) \(\frac {1}{1 - z^2}\) |
\((\arcoth z)’ =\) \(\frac {1}{1 - z^2}\) |
|
Die Sätze von Fermat, Rolle, Cauchy und Lagrange
Wir betrachten nun reelle Ableitungen: \(f: [a,b] \rightarrow \mathbb {R}\), \(a < b\).
Satz von Fermat: Sei \(f \in C([a,b])\), \(c \in \left ]a,b\right [\) mit \(f\) in \(c\) diffb. sowie
\(f(c) = \max _{x \in [a,b]} f(x)\) bzw. \(f(c) = \min _{x \in [a,b]} f(x)\). Dann ist \(f’(c) = 0\).
Satz von Rolle: Sei \(f \in C([a,b])\), \(f\) in \(\left ]a,b\right [\) diffb. sowie \(f(a) = f(b)\).
Dann gibt es ein \(c \in \left ]a,b\right [\), sodass \(f’(c) = 0\).
Satz von Cauchy: Seien \(f,g \in C([a,b])\), \(f,g\) in \(\left ]a,b\right [\) diffb. sowie \(g’(x) \not = 0\) für alle \(x \in \left ]a,b\right [\).
Dann gibt es ein \(c \in \left ]a,b\right [\), sodass \(\frac {f(b) - f(a)}{g(b) - g(a)} = \frac {f’(c)}{g’(c)}\).
Satz von Lagrange: Sei \(f \in C([a,b])\) in \(\left ]a,b\right [\) diffb.
Dann gibt es ein \(c \in \left ]a,b\right [\), sodass \(f(b) - f(a) = (b - a) \cdot f’(c)\).
Hauptsatz der Differentialrechnung
Sei \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\), mit \(X\) offen und \(\overline {ab} \subset X\), wobei \(\overline {ab}\) für \(a, b \in X\) definiert ist als \(\overline {ab} = \{x \in
\mathbb {K} \;|\; x = a +\) \(\frac {b - a}{|b - a|}\) \(t,\; t \in [0, |b - a|]\}\) und \(\overset {\circ }{\overline {ab}}\) \(= \overline {ab} \setminus \{a, b\}\).
Hauptsatz der Differentialrechnung: Sei \(f \circ \psi \) stetig auf \([0, |b - a|]\) und differenzierbar für \(t \in \left ]0, |b - a|\right [\) (d. h. \(f\) stetig auf \(\overline {ab}\)
und differenzierbar auf \(\overset {\circ }{\overline {ab}}\)), wobei \(\psi (t) = a +\) \(\frac {b - a}{|b - a|}\) \(t\).
Dann ist \(\Vert f(b) - f(a) \Vert \le \sup _{x \in \overset {\circ }{\overline {ab}}} \Vert f’(x) \Vert \cdot |b - a|\).
Ableitungen höherer Ordnung
Sei \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\) mit \(X\) offen. Ist diese Funktion in einer \(\varepsilon \)-Umgebung von \(x_0 \in X\) mit \(U_\varepsilon (x_0) \subset X\) diffb., so kann die
Ableitung als Funktion \(f’: U_\varepsilon (x_0) \rightarrow \mathbb {K}^n\) dargestellt werden.
höhere Ableitungen: Ist \(f’: U_\varepsilon (x_0) \rightarrow \mathbb {K}^n\) im Punkt \(x_0\) differenzierbar, so heißt \((f’)’(x_0) =:\) \(\frac {d^2 f}{dx^2}\)\(\big |_{x=x_0} = f’’(x_0)
= f^{(2)}(x_0)\) die zweite Ableitung von \(f\).
Die Definition kann iterativ fortgesetzt werden: Ist \(f^{(m-1)}: U_\varepsilon (x_0) \rightarrow \mathbb {K}^n\) in \(x_0\) differenzierbar, so ist analog \((f^{(m-1)})’(x_0) =:\) \(\frac {d^m f}{dx^m}\)\(\big
|_{x=x_0} = f^{(m)}(x_0)\) die \(m\)-te Ableitung von \(f\).
Schreibweise:
\(C^m(X, \mathbb {K}^n) = \{f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n \;|\; f \text { auf } X \text { } m \text {-fach differenzierbar},\; f^{(m)} \text { auf } X \text {
stetig}\}\),
\(C^\infty (X, \mathbb {K}^n) = \{f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n \;|\; f \text { beliebig oft auf } X \text { differenzierbar}\}\)
Satz von Leibniz: Seien \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\) und \(g: X \subset \mathbb {K} \rightarrow \mathbb {K}\) (\(X\) offen) \(m\)-fach diffb.
in \(X\).
Dann ist auch \((g \cdot f)\) \(m\)-fach differenzierbar und \((gf)^{(m)}(x_0) = \sum _{k=0}^m \binom {m}{k} g^{(k)}(x_0) f^{(m-k)}(x_0)\) (dabei sei \(g^{(0)} = g\) und \(f^{(0)} = f\)).
Der Satz von Taylor
Sei \(f: X \subset \mathbb {K} \rightarrow \mathbb {K}^n\) (\(X\) offen) in \(x_0 \in X\) \(m\)-fach differenzierbar.
Dann ist \(f(x_0 + h) = f(x_0) + \sum _{k=1}^m \frac {1}{k!} f^{(k)}(x_0) h^k + r_m(h)\) mit \(r_m(h) = o(h^m)\) für \(h \to 0\).
Monotonie und Extremwerte von Funktionen
Satz: Sei \(f: [a,b] \rightarrow \mathbb {R}^n\) stetig auf \([a,b]\) und differenzierbar in \(\left ]a,b\right [\).
Dann ist \(f\) konstant auf \([a,b]\) genau dann, wenn \(f’(x) = 0\) für alle \(x \in \left ]a,b\right [\) ist.
Folgerung: Seien \(f, g: [a,b] \rightarrow \mathbb {R}^n\) stetig auf \([a,b]\) und differenzierbar in \(\left ]a,b\right [\).
Dann folgt aus \(f’(x) = g’(x)\) für alle \(x \in \left ]a,b\right [\), dass \(f(x) = g(x) + \text {const.}\) ist.
Monotonie von Funktionen: Sei \(f: [a,b] \rightarrow \mathbb {R}\).
\(f\!\!\uparrow \quad \Leftrightarrow \quad (x_1 < x_2 \;\Rightarrow \; f(x_1) \le f(x_2))\), \(f\!\!\upuparrows \quad \Leftrightarrow \quad (x_1 < x_2 \;\Rightarrow \;
f(x_1) < f(x_2))\)
Satz: Sei \(f: [a,b] \rightarrow \mathbb {R}\) stetig auf \([a,b]\) sowie differenzierbar in \(\left ]a,b\right [\).
Dann ist \(f\!\!\uparrow \quad \Leftrightarrow \quad \forall _{x \in \left ]a,b\right [}\; f’(x) \ge 0\) sowie
\(f\!\!\upuparrows \quad \Leftrightarrow \quad (\forall _{x \in \left ]a,b\right [}\; f’(x) \ge 0) \land \lnot (\exists _{\alpha , \beta \in \left ]a,b\right [,\; \alpha < \beta } \forall
_{x \in [\alpha , \beta ]}\; f’(x) = 0)\).
globale Extremwerte: \(f: X \subset \mathbb {R} \rightarrow \mathbb {R}\) nimmt im Punkt \(c \in X\) ein globales Maximum (bzw. Minimum) an, falls \(f(c) \ge f(x)\) (bzw. \(f(c) \le f(x)\))
für alle \(x \in X\).
notwendige Bedingung (globale Extrema) (Satz von Fermat): Seien \(f: [a,b] \rightarrow \mathbb {R}\) stetig, in \(\left ]a,b\right [\) diffb. und \(c \in \left
]a,b\right [\) mit \(f(c) = \max _{x \in [a,b]} f(x)\). Dann ist \(f’(c) = 0\).
hinreichende Bedingung (globale Extrema): Seien \(f: [a,b] \rightarrow \mathbb {R}\) stetig, in \(\left ]a,b\right [\) diffb. und \(c \in \left ]a,b\right [\) mit \(f’(c) = 0\), wobei \(f’(x) \ge 0\)
für \(x < c\) und \(f’(x) \le 0\) für \(x > c\) (\(x \in \left ]a,b\right [\)).
Dann ist \(f(c) = \max _{x \in [a,b]} f(x)\).
Folgerung (doppelte Ableitung): Seien \(f: [a,b] \rightarrow \mathbb {R}\) stetig, in \(\left ]a,b\right [\) 2-fach diffb. und \(c \in \left ]a,b\right [\) mit \(f’(c) = 0\) sowie \(f’’(x) \le 0\)
für alle \(x \in \left ]a,b\right [\). Dann ist \(f(c) = \max _{x \in [a,b]} f(x)\).
lokale Extremwerte: \(f: X \subset \mathbb {R} \rightarrow \mathbb {R}\) nimmt im Punkt \(c \in X\) ein lokales Maximum (bzw. Minimum) an, falls \(\exists _{\varepsilon > 0} \forall _{x \in X
\cap U_\varepsilon (c)}\; f(c) \ge f(x)\) (bzw. \(f(c) \le f(x)\)).
notwendige Bedingung (lokale Extrema): Sei \(f: [a,b] \rightarrow \mathbb {R}\) stetig, in \(\left ]a,b\right [\) diffb. und \(c \in \left ]a,b\right [\), wobei \(f\) in \(c\) einen lokalen Extremwert
annimmt. Dann ist \(f’(c) = 0\).
hinreichende Bedingung (lokale Extrema): Sei \(f: [a,b] \rightarrow \mathbb {R}\) stetig, in \(\left ]a,b\right [\) diffb. sowie in \(c \in \left ]a,b\right [\) 2-fach diffb., wobei \(f’(c) = 0\) und
\(f’’(c) < 0\).
Dann nimmt \(f\) in \(c\) ein lokales Maximum an.
\(n\)-fache Ableitung (Extrema): Sei \(f: [a,b] \rightarrow \mathbb {R}\) in \(\left ]a,b\right [\) \(n-1\)-fach diffb. sowie in \(c \in \left ]a,b\right [\) \(n\)-fach diffb., wobei \(f’(c) = \cdots =
f^{(n-1)}(c) = 0\) und \(f^{(n)} \not = 0\).
Dann ist, falls \(n\) gerade ist, \(c\) ein lokales Maximum falls \(f^{(n)}(c) < 0\) bzw. ein lokales Minimum falls \(f^{(n)}(c) > 0\). Ist \(n\) ungerade, so ist \(c\) kein lokaler Extremwert.
Konvexe und konkave Funktionen
Sei \(f: [a,b] \rightarrow \mathbb {R}\).
konvexe und konkave Funktionen: \(f\) heißt konvex
\(\;\Leftrightarrow \; \forall _{x_1, x_2 \in [a,b],\; x_1 < x_2} \forall _{t \in [0,1]}\; f(tx_1 + (1 - t)x_2) \le t f(x_1) + (1 - t) f(x_2)\).
\(f\) heißt konkav \(\;\Leftrightarrow \;\) \(-f\) ist konvex.
Äquivalente Definition (Ableitung): Sei \(f\) stetig auf \([a,b]\) und differenzierbar in \(\left ]a,b\right [\).
Dann ist \(f\) konvex \(\;\Leftrightarrow \; f’\!\!\uparrow \) und \(f\) konkav \(\;\Leftrightarrow \; f’\!\!\downarrow \).
doppelte Ableitung: Sei \(f\) stetig auf \([a,b]\), 2-fach diffb. in \(\left ]a,b\right [\) sowie \(f’’(x) \ge 0\) für alle \(x \in \left ]a,b\right [\). Dann ist \(f\) konvex.
Wendepunkt: Sei \(f\) in \(\left ]a,b\right [\) differenzierbar.
\(c \in \left ]a,b\right [\) heißt Wendepunkt, falls \(f’(c)\) ein lokales Extremum ist.
notwendige Bedingung (Wendepunkte): Seien \(f\) in \(\left ]a,b\right [\) 2-fach diffb. und \(c \in \left ]a,b\right [\) ein Wendepunkt. Dann ist \(f’’(c) = 0\).
\(n\)-fache Ableitung (Wendepunkte): Sei \(f\) in \(\left ]a,b\right [\) \(n\)-fach diffb. sowie in \(c \in \left ]a,b\right [\) \(n+1\)-fach diffb., wobei \(f^{(2)}(c) = \cdots = f^{(n)}(c) = 0\) und
\(f^{(n+1)}(c) \not = 0\).
Dann ist \(c\) ein Wendepunkt, falls \(n\) gerade, und kein Wendepunkt, falls \(c\) ungerade ist.
Das Auflösen von Unbestimmtheiten vom Typ 0/0 und ∞/∞
Typ \(0/0\): Seien \(f, g: [a,b] \rightarrow \mathbb {R}\) (\(\mathbb {C}\), \(\mathbb {R}^n\), \(\mathbb {C}^n\)) und \(x_0 \in \left ]a,b\right [\) mit \(f, g\) in \(x_0\) diffb.,
\(f(x_0) = g(x_0) = 0\) sowie \(g’(x_0) \not = 0\). Dann existiert der Grenzwert \(\lim _{x \to x_0}\) \(\frac {f(x)}{g(x)} = \frac {f’(x_0)}{g’(x_0)}\).
Verallgemeinerung: Seien \(f, g: [a,b] \rightarrow \mathbb {R}\) (\(\mathbb {C}\)) und \(x_0 \in \left ]a,b\right [\) mit \(f(x_0) = g(x_0) = 0\), \(f’(x_0) = g’(x_0) = 0\), …,
\(f^{(n-1)}(x) = g^{(n-1)}(x) = 0\), \(\exists f^{(n)}(x_0)\), \(\exists g^{(n)}(x_0)\), wobei \(g^{(n)}(x_0) \not = 0\). Dann existiert der Grenzwert \(\lim _{x \to x_0}\) \(\frac {f(x)}{g(x)} = \frac
{f^{(n)}(x_0)}{g^{(n)}(x_0)}\).
Regel von Bernoulli und l’Hôspital: Seien \(f, g: \left ]a,b\right [ \rightarrow \mathbb {R}\) in \(\left ]a,b\right [\)
diffb.,
\(\lim _{x \to a} f(x) = \lim _{x \to a} g(x) = 0\) und \(g’(x) \not = 0\) für \(x \in \left ]a,b\right [\). Außerdem existiere der Grenzwert \(\lim _{x \to a}\)\(\frac {f’(x)}{g’(x)}\) \(=: A\).
Dann existiert der Grenzwert \(\lim _{x \to a}\)\(\frac {f(x)}{g(x)}\) \(= A\).
Dieser Satz gilt nur für reellwertige (nicht für komplexwertige) Funktionen!
Anwendung: bei Funktionen \(f, g: \left [b,+\infty \right [ \rightarrow \mathbb {R}\), \(b > 0\), wobei
\(\lim _{x \to +\infty } f(x) = \lim _{x \to +\infty } g(x) = 0\) und \(A = \lim _{x \to +\infty } \frac {f’(x)}{g’(x)}\). Dann ist \(\lim _{x \to +\infty } \frac {f(x)}{g(x)} = A\).
(Variablentransformation mit \(x = \frac {1}{t}\))
Typ \(\infty /\infty \): Seien \(f, g: \left ]a,b\right [ \rightarrow \mathbb {R}\) in \(\left ]a,b\right [\) diffb., \(\lim _{x \to a} f(x) = \infty \), \(\lim _{x \to a} g(x) = \infty \) und es
existiere der Grenzwert \(\lim _{x \to a}\)\(\frac {f’(x)}{g’(x)}\) \(=: A\). Dann existiert der Grenzwert \(\lim _{x \to a}\)\(\frac {f(x)}{g(x)}\) \(= A\).
Grenzwerte \(f(x) \cdot g(x)\) vom Typ \(\mathrel {\widehat {=}} 0 \cdot \infty \mathrel {\widehat {=}}\) \(\frac {f(x)}{\frac {1}{g(x)}}\) kann man auf \(0/0\) zurückführen.
Grenzwerte \(f(x)^{g(x)}\) mit \(1^\infty \), \(0^0\) oder \(\infty ^0\) kann man mit \(f(x)^{g(x)} = e^{g(x) \cdot \ln f(x)}\) auf \(0 \cdot \infty \) zurückführen.
Weitere Anwendungen der Differentialrechnung
Tangente: \(y = f’(x_0) \cdot (x - x_0) + y_0\), Normale: \(y = -\)\(\frac {1}{f’(x_0)}\) \(\cdot \; (x - x_0) + y_0\)
Differentiation parametrisch gegebener Kurven: Gegeben seien die differenzierbaren Funktionen \(\psi : \left ]\alpha ,\beta \right [ \rightarrow \left ]a,b\right [\) sowie \(f: \left ]a,b\right [
\rightarrow \mathbb {R}\). Durch \(x(t) = \psi (t)\) und \(y(t) = f(\psi (t))\) sei für \(t \in \left ]\alpha , \beta \right [\) eine Kurve gegeben. Dann ist \(f’(x_0) =\) \(\frac {\dot
{y}(t_0)}{\dot {x}(t_0)}\) für \(x_0 = x(t_0)\).
geradlinige Asymptote: \(g(x) = ax + b\) ist eine (lokale) geradlinige Asymptote von \(f(x)\) für \(x \to +\infty \) (bzw. \(x \to -\infty \)), falls \(\lim _{x \to +\infty \; (\text {bzw.
}-\infty )} (f(x) - g(x)) = 0\).
Dann ist \(a = \lim _{x \to \pm \infty } \frac {f(x)}{x}\) und \(b = \lim _{x \to \pm \infty } (f(x) - ax)\).
Der Satz von Darboux
Satz: Seien \(f: \left ]a,b\right [ \rightarrow \mathbb {R}\) diffb. und \(x_1, x_2 \in \left ]a,b\right [\) mit \(x_1 < x_2\), wobei \(f’(x_1) \cdot f’(x_2) < 0\) ist.
Dann gibt es ein \(x_0 \in \left ]x_1,x_2\right [\), sodass \(f’(x_0) = 0\).
Satz von Darboux: Seien \(f: \left ]a,b\right [ \rightarrow \mathbb {R}\) diffb. und \(x_1, x_2 \in \left ]a,b\right [\) mit \(x_1 < x_2\), wobei \(f’(x_1) \not =
f’(x_2)\). Sei außerdem \(\lambda \in \mathbb {R}\) mit \(f’(x_1) < \lambda < f’(x_2)\) bzw. \(f’(x_2) < \lambda < f’(x_1)\).
Dann gibt es ein \(x_0 \in \left ]x_1,x_2\right [\), sodass \(f’(x_0) = \lambda \).
Satz: Sei \(f: \left ]a,b\right [ \rightarrow \mathbb {R}\) differenzierbar. Dann besitzt \(f’\) keine Unstetigkeit der ersten Art.
Nullstellenberechnung
Gegeben sei eine Funktion \(f: [a,b] \rightarrow \mathbb {R}\) stetig mit \(f(a) f(b) < 0\), \(f\) zweimal stetig diffb. und \(f’(x) \not = 0\), \(f’’(x) \not = 0\) für alle \(x \in \left ]a,b\right
[\) (d. h. \(f’, f’’\) haben konstantes Vorzeichen).
Satz: \(\exists !_{\xi \in \left ]a,b\right [}\; f(\xi ) = 0\)
Regula falsi (Sehnenmethode): Bei der Sehnenmethode versucht man, \(f\) durch die Sehne durch \((a, f(a))\) und \((b, f(b))\) anzunähern. Deren Gleichung lautet \(g(x) = f(a) +\) \(\frac
{f(b) - f(a)}{b - a}\) \((x - a)\).
Für die Nullstelle \(x_1 = a \;-\) \(\frac {b - a}{f(b) - f(a)}\) \(f(a) \in \left ]a,b\right [\) gilt, dass \(\xi \in \left ]x_1,b\right [\) bzw. \(\xi \in \left ]a,x_1\right [\) (wenn \(f’, f’’\)
die gleichen bzw. unterschiedliche Vorzeichen haben). Nun muss man nur noch in dem Intervall \([x_1,b]\) bzw. \([a,x_1]\) nach der Nullstelle \(\xi \) suchen.
Fehlerabschätzung: Sei \(x_0 = a\), \(x_n = x_{n-1} \;-\) \(\frac {b - x_{n-1}}{f(b) - f(x_{n-1})}\) \(f(x_{n-1})\) bzw.
\(x_0 = b\), \(x_n = x_{n-1} \;-\) \(\frac {x_{n-1} - a}{f(x_{n-1}) - f(a)}\) \(f(x_{n-1})\).
Dann ist \(\lim _{n \to \infty } x_n = \xi \), wobei \(|x_n - \xi | \le \) \(\frac {|f(x_n)|}{\min _{x \in [a,b]} |f’(x)|}\).
Newton-Verfahren (Tangentenmethode): Beim Newton-Verfahren versucht man, die Nullstelle \(\xi \) durch Nullstellen der Ableitung zu bestimmen. Für den Fall
\(\sgn (f’) = \sgn (f’’)\) gilt für die Tangentengleichung in \(x_0 = b\), dass \(g(x) = f(b) + f’(b) \cdot (x - b)\), deren Nullstelle ist \(x_1 = b \;-\) \(\frac {f(b)}{f’(b)}\). Es gilt \(x_1 \in
[a,b]\). Analog ist \(x_1 = a \;-\) \(\frac {f(a)}{f’(a)}\) \(\in [a,b]\) für \(\sgn (f’) \not = \sgn (f’’)\) (dann muss die Tangente in \(x_0 = a\) bestimmt werden). Wiederum muss nun nur noch im
Intervall \([a,x_1]\) bzw. \([x_1,b]\) nach der Nullstelle \(\xi \) gesucht werden.
Fehlerabschätzung: Sei \(x_0 = b\) bzw. \(x_0 = a\) und \(x_n = x_{n-1} \;-\) \(\frac {f(x_{n-1})}{f’(x_{n-1})}\).
Dann ist \(\lim _{n \to \infty } x_n = \xi \), wobei \(\exists _{M > 0} \forall _{n \in \mathbb {N}}\; |x_{n+1} - \xi | \le M |x_n - \xi |^2\).